1
|
Clarke CJ, Verlet JRR. Dynamics of Anions: From Bound to Unbound States and Everything In Between. Annu Rev Phys Chem 2024; 75:89-110. [PMID: 38277700 DOI: 10.1146/annurev-physchem-090722-125031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Gas-phase anions present an ideal playground for the exploration of excited-state dynamics. They offer control in terms of the mass, extent of solvation, internal temperature, and conformation. The application of a range of ion sources has opened the field to a vast array of anionic systems whose dynamics are important in areas ranging from biology to star formation. Here, we review recent experimental developments in the field of anion photodynamics, demonstrating the detailed insight into photodynamical and electron-capture processes that can be uncovered. We consider the electronic and nuclear ultrafast dynamics of electronically bound excited states along entire reaction coordinates; electronically unbound states showing that photochemical concepts, such as chromophores and Kasha's rule, are transferable to electron-driven chemistry; and nonvalence states that straddle the interface between bound and unbound states. Finally, we consider likely developments that are sure to keep the field of anion dynamics buoyant and impactful.
Collapse
Affiliation(s)
- Connor J Clarke
- Department of Chemistry, Durham University, Durham, United Kingdom;
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham, United Kingdom;
| |
Collapse
|
2
|
Ameixa J, Arthur-Baidoo E, Pereira-da-Silva J, Ončák M, Ruivo J, Varella MDN, Ferreira da Silva F, Denifl S. Parent anion radical formation in coenzyme Q 0: Breaking ubiquinone family rules. Comput Struct Biotechnol J 2022; 21:346-353. [PMID: 36582437 PMCID: PMC9792397 DOI: 10.1016/j.csbj.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
We report electron attachment (EA) measurements for the parent anion radical formation from coenzyme Q0 (CoQ0) at low electron energies (<2 eV) along with quantum chemical calculations. CoQ0 may be considered a prototype for the electron withdrawing properties of the larger CoQ n molecules, in particular ubiquinone (CoQ10), an electron carrier in aerobic cell respiration. Herein, we show that the mechanisms for the parent anion radical formation of CoQ0 and CoQ n (n = 1,2,4) are remarkably distinct. Reported EA data for CoQ1, CoQ2, CoQ4 and para-benzoquinone indicated stabilization of the parent anion radicals around 1.2-1.4 eV. In contrast, we observe for the yield of the parent anion radical of CoQ0 a sharp peak at ∼ 0 eV, a shoulder at 0.07 eV and a peak around 0.49 eV. Although the mechanisms for the latter feature remain unclear, our calculations suggest that a dipole bound state (DBS) would account for the lower energy signals. Additionally, the isoprenoid side chains in CoQ n (n = 1,2,4) molecules seem to influence the DBS formation for these compounds. In contrast, the side chains enhance the parent anion radical stabilization around 1.4 eV. The absence of parent anion radical formation around 1.4 eV for CoQ0 can be attributed to the short auto-ionization lifetimes. The present results shed light on the underappreciated role played by the side chains in the stabilization of the parent anion radical. The isoprenoid tails should be viewed as co-responsible for the electron-accepting properties of ubiquinone, not mere spectators of electron transfer reactions.
Collapse
Affiliation(s)
- J. Ameixa
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
- CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Center for Molecular Biosciences (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - E. Arthur-Baidoo
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
- Center for Molecular Biosciences (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - J. Pereira-da-Silva
- CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - M. Ončák
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - J.C. Ruivo
- Institute of Physics, University of São Paulo, Rua do Matão 1731, 05508-090 São Paulo, Brazil
| | - M.T. do N. Varella
- Institute of Physics, University of São Paulo, Rua do Matão 1731, 05508-090 São Paulo, Brazil
| | - F. Ferreira da Silva
- CEFITEC, Department of Physics, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - S. Denifl
- Institut für Ionenphysik und Angewandte Physik, Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
- Center for Molecular Biosciences (CMBI), Leopold-Franzens Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Stockett MH, Bull JN, Schmidt HT, Zettergren H. Statistical vibrational autodetachment and radiative cooling rates of para-benzoquinone. Phys Chem Chem Phys 2022; 24:12002-12010. [PMID: 35535575 DOI: 10.1039/d2cp00490a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We report measurements of the statistical vibrational autodetachment (VAD, also called thermionic emission) and radiative cooling rates of isolated para-benzoquinone (pBQ, C6H4O2) radical anions using the cryogenic electrostatic ion storage ring facility DESIREE. The results are interpreted using master equation simulations with rate coefficients calculated using statistical detailed balance theory. The VAD rate is determined by measuring the time-dependent yield of neutral pBQ due to spontaneous electron emission from a highly-excited ensemble of anions formed in an electron-attachment ion source. Competition with radiative cooling quenches the VAD rate after a critical time of τc = 11.00(5) ms. Master equation simulations which reproduce the VAD yield provide an estimate of the initial effective vibrational temperature of the ions of 1100(20) K, and provide insight into the anion formation scenario. A second measurement of the radiative cooling rate of pBQ- stored for up to 0.5 s was achieved using time-dependent photodetachment action spectroscopy across the 2Au ← 2B2g and 2B2u ← 2B2g transitions. The rate at which hot-band contributions fade from the action spectrum is quantified by non-negative matrix factorisation. This is found to be commensurate with the average vibrational energy extracted from the simulations, with 1/e lifetimes of 0.16(3) s and 0.1602(7) s, respectively. Implications for astrochemistry are discussed.
Collapse
Affiliation(s)
- Mark H Stockett
- Department of Physics, Stockholm University, Stockholm, Sweden.
| | - James N Bull
- School of Chemistry, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
4
|
Lietard A, Verlet JRR. Effect of Microhydration on the Temporary Anion States of Pyrene. J Phys Chem Lett 2022; 13:3529-3533. [PMID: 35420036 PMCID: PMC9084602 DOI: 10.1021/acs.jpclett.2c00523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
The influence of incremental hydration (≤4) on the electronic resonances of the pyrene anion is studied using two-dimensional photoelectron spectroscopy. The photoexcitation energies of the resonances do not change; therefore, from the anion's perspective, the resonances remain the same, but from the neutral's perspective of the electron-molecule reaction, the resonances decrease in energy by the binding energy of the water molecules. The autodetachment of the resonances shows that hydration has very little effect, showing that even the dynamics of most of the resonances are not impacted by hydration. Two specific resonances do show changes that are explained by the closing of specific autodetachment channels. The lowest-energy resonance leads to efficient electron capture as observed through thermionic emission and evaporation of water molecules (dissociative electron attachment). The implications of low-energy electron capture in dense molecular interstellar clouds are discussed.
Collapse
|
5
|
Pshenichnyuk SA, Modelli A. Electron Attachment to Isolated Molecules as a Probe to Understand Mitochondrial Reductive Processes. Methods Mol Biol 2021; 2277:101-124. [PMID: 34080147 DOI: 10.1007/978-1-0716-1270-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This chapter describes the complementary experimental techniques Electron Transmission Spectroscopy and Dissociative Electron Attachment Spectroscopy, two of the most suitable means for investigating interactions between electrons and gas-phase molecules, resonance formation of temporary molecular negative ions, and their possible decay through the dissociative electron attachment (DEA) mechanism. The latter can be seen as the gas-phase counterpart of the transfer of a solvated electron in solution, accompanied by dissociation of the molecular anion, referred to as dissociative electron transfer (DET). DET takes place in vivo under reductive conditions, for instance, in the intermembrane space of mitochondria under interaction of xenobiotic molecules possessing high electron affinity with electrons "leaked" from the mitochondrial respiratory chain. A likely mechanism of the toxic activity of dichlorodiphenyltrichloroethane based on its DEA properties is briefly outlined, and compared with the well-established harmful effects of the model toxicant carbon tetrachloride ascribed to reductive dechlorination in a cellular ambient. A possible mechanism of the antioxidant activity of polyphenolic compounds present near the main site of superoxide anion production in mitochondria is also briefly discussed.
Collapse
Affiliation(s)
- Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences, Ufa, Russia.
| | - Alberto Modelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna, Bologna, Italy
- Centro Interdipartimentale di Ricerca in Scienze Ambientali, Ravenna, Italy
| |
Collapse
|
6
|
Pshenichnyuk SA, Modelli A, Asfandiarov NL, Komolov AS. Ionizing radiation and natural constituents of living cells: Low-energy electron interaction with coenzyme Q analogs. J Chem Phys 2020; 153:111103. [PMID: 32962391 DOI: 10.1063/5.0022188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Resonance electron attachment to short-tail analogs of coenzyme Q10 is investigated in the electron energy range 0 eV-14 eV under gas-phase conditions by means of dissociative electron attachment spectroscopy. Formation of long-lived (milliseconds) molecular negative ions is detected at 1.2 eV, but not at thermal energy. A huge increase in the electron detachment time as compared with the reference para-benzoquinone (40 µs) is ascribed to the presence of the isoprene side chains. Elimination of a neutral CH3 radical is found to be the most intense decay detected on the microsecond time scale. The results give some insight into the timescale of electron-driven processes stimulated in living tissues by high-energy radiation and are of importance in prospective fields of radiobiology and medicine.
Collapse
Affiliation(s)
- Stanislav A Pshenichnyuk
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 151, 450075 Ufa, Russia
| | - Alberto Modelli
- Università di Bologna, Dipartimento di Chimica "G. Ciamician", Via Selmi 2, 40126 Bologna, Italy
| | - Nail L Asfandiarov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya 151, 450075 Ufa, Russia
| | - Alexey S Komolov
- St. Petersburg State University, Universitetskaya nab. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
7
|
Verlet JRR, Anstöter CS, Bull JN, Rogers JP. Role of Nonvalence States in the Ultrafast Dynamics of Isolated Anions. J Phys Chem A 2020; 124:3507-3519. [PMID: 32233436 PMCID: PMC7212518 DOI: 10.1021/acs.jpca.0c01260] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Nonvalence states
of neutral molecules (Rydberg states) play important
roles in nonadiabatic dynamics of excited states. In anions, such
nonadiabatic transitions between nonvalence and valence states have
been much less explored even though they are believed to play important
roles in electron capture and excited state dynamics of anions. The
aim of this Feature Article is to provide an overview of recent experimental
observations, based on time-resolved photoelectron imaging, of valence
to nonvalence and nonvalence to valence transitions in anions and
to demonstrate that such dynamics may be commonplace in the excited
state dynamics of molecular anions and cluster anions.
Collapse
Affiliation(s)
- Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Cate S Anstöter
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - James N Bull
- School of Chemistry, Norwich Research Park, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Joshua P Rogers
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
8
|
Mensa-Bonsu G, Wilson MR, Tozer DJ, Verlet JRR. Photoelectron spectroscopy of para-benzoquinone cluster anions. J Chem Phys 2019; 151:204302. [PMID: 31779316 DOI: 10.1063/1.5132391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The photoelectron spectra of para-benzoquinone radical cluster anions, (pBQ)n - (n = 2-4), taken at hv = 4.00 eV are presented and compared with the photoelectron spectrum of the monomer (n = 1). For all clusters, a direct detachment peak can be identified, and the incremental increase in the vertical detachment energy of ∼0.4 eV n-1 predominantly reflects the increase in cohesion energy as the cluster size increases. For all clusters, excitation also leads to low energy electrons that are produced by thermionic emission from ground electronic state anionic species, indicating that resonances are excited at this photon energy. For n = 3 and 4, photoelectron features at lower binding energy are observed which can be assigned to photodetachment from pBQ- for n = 3 and both pBQ- and (pBQ)2 - for n = 4. These observations indicate that the cluster dissociates on the time scale of the laser pulse (∼5 ns). The present results are discussed in the context of related quinone cluster anions.
Collapse
Affiliation(s)
- Golda Mensa-Bonsu
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Mark R Wilson
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - David J Tozer
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|