1
|
Wen T, Kermarrec M, Dumont E, Gillet N, Greenberg MM. DNA-Histone Cross-Link Formation via Hole Trapping in Nucleosome Core Particles. J Am Chem Soc 2023; 145:23702-23714. [PMID: 37856159 PMCID: PMC10652223 DOI: 10.1021/jacs.3c08135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Radical cations (holes) produced in DNA by ionizing radiation and other oxidants yield DNA-protein cross-links (DPCs). Detailed studies of DPC formation in chromatin via this process are lacking. We describe here a comprehensive examination of DPC formation within nucleosome core particles (NCPs), which are the monomeric component of chromatin. DNA holes are introduced at defined sites within NCPs that are constructed from the bottom-up. DPCs form at DNA holes in yields comparable to those of alkali-labile DNA lesions that result from water trapping. DPC-forming efficiency and site preference within the NCP are dependent on translational and rotational positioning. Mass spectrometry and the use of mutant histones reveal that lysine residues in histone N-terminal tails and amino termini are responsible for the DPC formation. These studies are corroborated by computational simulation at the microsecond time scale, showing a wide range of interactions that can precede DPC formation. Three consecutive dGs, which are pervasive in the human genome, including G-quadruplex-forming sequences, are sufficient to produce DPCs that could impact gene expression.
Collapse
Affiliation(s)
- Tingyu Wen
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Maxime Kermarrec
- Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, ENS de Lyon, CNRS, F-69342 Lyon, France
| | - Elise Dumont
- Institut de Chimie de Nice UMR 7272, Université Côte d'Azur, CNRS, 06108 Nice, France
- Institut Universitaire de France, 5 Rue Descartes, 75005 Paris, France
| | - Natacha Gillet
- Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, ENS de Lyon, CNRS, F-69342 Lyon, France
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
2
|
Angelov D, Boopathi R, Lone IN, Menoni H, Dimitrov S, Cadet J. Capturing Protein-Nucleic Acid Interactions by High-Intensity Laser-Induced Covalent Crosslinking. Photochem Photobiol 2022; 99:296-312. [PMID: 35997098 DOI: 10.1111/php.13699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Interactions of DNA with structural proteins such as histones, regulatory proteins, and enzymes play a crucial role in major cellular processes such as transcription, replication and repair. The in vivo mapping and characterization of the binding sites of the involved biomolecules are of primary importance for a better understanding of genomic deployment that is implicated in tissue and developmental stage-specific gene expression regulation. The most powerful and commonly used approach to date is immunoprecipitation of chemically cross-linked chromatin (XChIP) coupled with sequencing analysis (ChIP-seq). While the resolution and the sensitivity of the high-throughput sequencing techniques have been constantly improved little progress has been achieved in the crosslinking step. Because of its low efficiency the use of the conventional UVC lamps remains very limited while the formaldehyde method was established as the "gold standard" crosslinking agent. Efficient biphotonic crosslinking of directly interacting nucleic acid-protein complexes by a single short UV laser pulse has been introduced as an innovative technique for overcoming limitations of conventionally used chemical and photochemical approaches. In this survey, the main available methods including the laser approach are critically reviewed for their ability to generate DNA-protein crosslinks in vitro model systems and cells.
Collapse
Affiliation(s)
- Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, CNRS UMR 5239, 46 Allée d'Italie, 69007, Lyon, France.,Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, Izmir 35330, Turkey
| | - Ramachandran Boopathi
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, CNRS UMR 5239, 46 Allée d'Italie, 69007, Lyon, France.,Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000, Grenoble, France
| | - Imtiaz Nisar Lone
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, Izmir 35330, Turkey
| | - Hervé Menoni
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700, La Tronche, France
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Santé - Allée des Alpes, 38700, La Tronche, France
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| |
Collapse
|
3
|
Angelov D, Lone IN, Menoni H, Cadet J. Interstrand Crosslinking Involving Guanine: A New Major UVC Laser-Induced Biphotonic Oxidatively Generated DNA Damage. Photochem Photobiol 2021; 98:662-670. [PMID: 34958483 DOI: 10.1111/php.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Several classes of oxidatively generated DNA damage including oxidized purine and pyrimidine bases, interstrand base crosslinks and DNA-protein crosslinks have been previously shown to be generated in both isolated DNA and cellular DNA upon exposure to either 266 nm laser irradiation or one-electron oxidants. In this study, we provide evidence that biphotonic ionization of guanine bases by UVC laser irradiation of double-stranded deoxyoligonucleotides in aerated aqueous solutions induces the formation of interstrand cross-links (ICLs). This is supported by various experiments including sequencing gel analyses of formed photoproducts and effects of UVC laser intensity on their formation. This constitutes a novel example of the diversity of reactions of guanine radical cation that can be generated by various one-electron oxidants including UVC laser biphotonic ionization, direct effect of ionization radiation and type I photosensitizers. However, the exact structure of the interstrand base adducts that is a challenging analytical issue remains to be further established. Examples of relevant biochemical/structural applications of biphotonic induction of ICLs in DNA samples by high-intensity UVC laser pulses are provided.
Collapse
Affiliation(s)
- Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule LBMC, 46 Allée d'Italie, 69007, Lyon, France.,Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University Health Campus, Balçova, Izmir, 35330, Turkey
| | - Imtiaz Nisar Lone
- Izmir Biomedicine and Genome Center IBG, Dokuz Eylul University Health Campus, Balçova, Izmir, 35330, Turkey
| | - Hervé Menoni
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences IAB, Site Santé - Allée des Alpes, 38700, La Tronche, France
| | - Jean Cadet
- Département de Médecine nucléaire et Radiobiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| |
Collapse
|
4
|
Baptista MS, Cadet J, Greer A, Thomas AH. Photosensitization Reactions of Biomolecules: Definition, Targets and Mechanisms. Photochem Photobiol 2021; 97:1456-1483. [PMID: 34133762 DOI: 10.1111/php.13470] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/13/2021] [Indexed: 02/07/2023]
Abstract
Photosensitization reactions have been demonstrated to be largely responsible for the deleterious biological effects of UV and visible radiation, as well as for the curative actions of photomedicine. A large number of endogenous and exogenous photosensitizers, biological targets and mechanisms have been reported in the past few decades. Evolving from the original definitions of the type I and type II photosensitized oxidations, we now provide physicochemical frameworks, classifications and key examples of these mechanisms in order to organize, interpret and understand the vast information available in the literature and the new reports, which are in vigorous growth. This review surveys in an extended manner all identified photosensitization mechanisms of the major biomolecule groups such as nucleic acids, proteins, lipids bridging the gap with the subsequent biological processes. Also described are the effects of photosensitization in cells in which UVA and UVB irradiation triggers enzyme activation with the subsequent delayed generation of superoxide anion radical and nitric oxide. Definitions of photosensitized reactions are identified in biomolecules with key insights into cells and tissues.
Collapse
Affiliation(s)
| | - Jean Cadet
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, NY, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA
| | - Andrés H Thomas
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), CCT La Plata-CONICET, La Plata, Argentina
| |
Collapse
|
5
|
Semmeq A, Badawi M, Hasnaoui A, Ouaskit S, Monari A. DNA Nucleobase under Ionizing Radiation: Unexpected Proton Transfer by Thymine Cation in Water Nanodroplets. Chemistry 2020; 26:11340-11344. [PMID: 32511805 DOI: 10.1002/chem.202002025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Indexed: 11/07/2022]
Abstract
The effect of ionizing radiation on DNA constituents is a widely studied fundamental process using experimental and computational techniques. In particular, radiation effects on nucleobases are usually tackled by mass spectrometry in which the nucleobase is embedded in a water nanodroplet. Here, we present a multiscale theoretical study revealing the effects and the dynamics of water droplets towards neutral and ionized thymine. In particular, by using both hybrid quantum mechanics/molecular mechanics and full ab initio molecular dynamics, we reveal an unexpected proton transfer from thymine cation to a nearby water molecule. This leads to the formation of a neutral radical thymine and a Zundel structure, while the hydrated proton localizes at the interface between the deprotonated thymine and the water droplet. This observation opens entirely novel perspectives concerning the reactivity and further fragmentation of ionized nucleobases.
Collapse
Affiliation(s)
- Abderrahmane Semmeq
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France.,Laboratoire de Physique de la Matière Condensée LPMC Faculté des, Sciences Ben M'sik, University Hassan II of Casablanca, BP 7955 Av. Driss El Harti, Sidi Othmane, 20000, Casablanca, Morocco
| | - Michael Badawi
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Abdellatif Hasnaoui
- LS3M, Faculté Polydisicplinaire-Khouribga, University Sultan Moulay Slimane of Beni Mellal, B.P 145, 25000, Khouribga, Morocco
| | - Said Ouaskit
- Laboratoire de Physique de la Matière Condensée LPMC Faculté des, Sciences Ben M'sik, University Hassan II of Casablanca, BP 7955 Av. Driss El Harti, Sidi Othmane, 20000, Casablanca, Morocco
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| |
Collapse
|
6
|
Sun Y, Tsai M, Zhou W, Lu W, Liu J. Reaction Kinetics, Product Branching, and Potential Energy Surfaces of 1O 2-Induced 9-Methylguanine-Lysine Cross-Linking: A Combined Mass Spectrometry, Spectroscopy, and Computational Study. J Phys Chem B 2019; 123:10410-10423. [PMID: 31718186 DOI: 10.1021/acs.jpcb.9b08796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a kinetics and mechanistic study on the 1O2 oxidation of 9-methylguanine (9MG) and the cross-linking of the oxidized intermediate 2-amino-9-methyl-9H-purine-6,8-dione (9MOGOX) with Nα-acetyl-lysine-methyl ester (abbreviated as LysNH2) in aqueous solutions of different pH. Experimental measurements include the determination of product branching ratios and reaction kinetics using mass spectrometry and absorption spectroscopy, and the characterization of product structures by employing collision-induced dissociation. Strong pH dependence was revealed for both 9MG oxidation and the addition of nucleophiles (water and LysNH2) at the C5 position of 9MOGOX. The 1O2 oxidation rate constant of 9MG was determined to be 3.6 × 107 M-1·s-1 at pH 10.0 and 0.3 × 107 M-1·s-1 at pH 7.0, both of which were measured in the presence of 15 mM LysNH2. The ωB97XD density functional theory coupled with various basis sets and the SMD implicit solvation model was used to explore the reaction potential energy surfaces for the 1O2 oxidation of 9MG and the formation of C5-water and C5-LysNH2 adducts of 9MOGOX. Computational results have shed light on reaction pathways and product structures for the different ionization states of the reactants. The present work has confirmed that the initial 1O2 addition represents the rate-limiting step for the oxidative transformations of 9MG. All of the downstream steps are exothermic with respect to the starting reactants. The C5-cross-linking of 9MOGOX with LysNH2 significantly suppressed the formation of spiroiminodihydantoin (9MSp) resulting from the C5-water addition. The latter became dominant only at the low concentration (∼1 mM) of LysNH2.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry , Queens College of the City University of New York , 65-30 Kissena Blvd. , Queens , New York 11367 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , 365 5th Avenue , New York , New York 10016 , United States
| | - Midas Tsai
- Department of Natural Sciences , LaGuardia Community College , 31-10 Thomson Avenue , Long Island City , New York 11101 , United States
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry , Queens College of the City University of New York , 65-30 Kissena Blvd. , Queens , New York 11367 , United States
| | - Wenchao Lu
- Department of Chemistry and Biochemistry , Queens College of the City University of New York , 65-30 Kissena Blvd. , Queens , New York 11367 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , 365 5th Avenue , New York , New York 10016 , United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry , Queens College of the City University of New York , 65-30 Kissena Blvd. , Queens , New York 11367 , United States.,Ph.D. Program in Chemistry , The Graduate Center of the City University of New York , 365 5th Avenue , New York , New York 10016 , United States
| |
Collapse
|