1
|
Li C, Wang S, Li S, Yin H, Ma Q, Chen FX. Construction and Modification of Nitrogen-Rich Polycyclic Frameworks: A Promising Fused Tricyclic Host-Guest Energetic Material with Heat Resistance, High Energy, and Low Sensitivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35232-35244. [PMID: 38917334 DOI: 10.1021/acsami.4c07938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The construction and modification of novel energetic frameworks to achieve an ideal balance between high energy density and good stability are a continuous pursuit for researchers. In this work, a fused [5,6,5]-tricyclic framework was utilized as the energetic host to encapsulate the oxidant molecules for the first time. A series of new pyridazine-based [5,6] and [5,6,5] fused polycyclic nitrogen-rich skeletons and their derivatives were designed and synthesized. Two strategies, amino oxidation and host-guest inclusion, were used to modify the skeleton in only one step. All compounds exhibit good comprehensive properties (Td (onset) > 200 °C, ρ > 1.85 g cm-3, Dv > 8400 m s-1, IS > 20 J, FS > 360 N). Benefiting from the pyridazine-based fused tricyclic structure with more hydrogen bonding units and larger conjugated systems, the first example of [5,6,5]-tricyclic host-guest energetic material triamino-9H-pyrazolo[3,4-d][1,2,4]triazolo[4,3-b]pyridazine-diperchloric acid (10), shows high decomposition temperature (Td (onset) = 336 °C), high density and heats of formation (ρ = 1.94 g cm-3, ΔHf = 733.4 kJ mol-1), high detonation performance (Dv = 8820 m s-1, P = 36.2 GPa), high specific impulse (Isp = 269 s), and low sensitivity (IS = 30 J, FS > 360 N). The comprehensive performance of 10 is superior to that of high-energy explosive RDX and heat-resistant explosives such as HNS and LLM-105. 10 has the potential to become a comprehensive advanced energetic material that simultaneously satisfies the requirements of high-energy and low-sensitivity explosives, heat-resistant explosives, and solid propellants. This work may give new insights into the construction and modification of a nitrogen-rich polycyclic framework and broaden the applications of fused polycyclic framework for the development of host-guest energetic materials.
Collapse
Affiliation(s)
- Congcong Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Campus, No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Shaoqing Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Campus, No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Shaojia Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Campus, No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Hongquan Yin
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Campus, No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| | - Qing Ma
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Fu-Xue Chen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Liangxiang Campus, No. 8 Liangxiang East Road, Fangshan District, Beijing 102488, China
| |
Collapse
|
2
|
Liu W, Feng Y, Yao Y, Liang Z, Xiao F, Ma Z. In situ synthesis of [Cu(BODN)·5H 2O] n@nano-Al composite energetic films with tunable properties in pyro-MEMS. LAB ON A CHIP 2023; 23:4493-4503. [PMID: 37753862 DOI: 10.1039/d3lc00282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Integrating energetic materials with microelectromechanical systems (MEMS) to achieve miniaturized integrated smart energetic microchips has broad application prospects in miniaturized aerospace systems and civil explosive systems. In this work, MEMS compatible [Cu(BODN)·5H2O]n arrays and [Cu(BODN)·5H2O]n@nano-Al composite energetic films were successfully fabricated on copper substrates by the in situ reaction method and drop-coating method. Single crystal X-ray diffraction, powder X-ray diffraction, scanning electron microscopy, infrared spectroscopy, differential thermal analyses, and pulsed laser ignition were employed to characterize the prepared samples. The results show that [Cu(BODN)·5H2O]n arrays formed by the coordination reaction between the Cu(OH)2 template and the BODN ligand exhibit a porous supramolecular structure with excellent thermal and energy properties. Their morphology and composition on a copper substrate can be effectively regulated by adjusting the reaction time and solution concentration. In addition, adjustable energetic properties of [Cu(BODN)·5H2O]n@nano-Al composite films can be achieved after the encapsulation of nano-Al. Their heat release, flame height and ignition duration can reach as much as 1987.5 J g-1, 13.2 mm, and 5900 μs, respectively, indicating that [Cu(BODN)·5H2O]n@nano-Al can be used as an excellent pyrotechnic agent in MEMS ignition chips. Overall, this work provides a reference for the integration and application of energetic materials in MEMS systems.
Collapse
Affiliation(s)
- Wei Liu
- School of Environmental and Safety Engineering, North University of China, Taiyuan, Shanxi, China.
| | - Yongan Feng
- School of Environmental and Safety Engineering, North University of China, Taiyuan, Shanxi, China.
| | - Yapeng Yao
- School of Environmental and Safety Engineering, North University of China, Taiyuan, Shanxi, China.
| | - Zihang Liang
- School of Environmental and Safety Engineering, North University of China, Taiyuan, Shanxi, China.
| | - Fei Xiao
- School of Environmental and Safety Engineering, North University of China, Taiyuan, Shanxi, China.
| | - Zhongliang Ma
- School of Environmental and Safety Engineering, North University of China, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Regulation of external electric field on sensitivity of ICM energetic materials. J Mol Model 2023; 29:62. [PMID: 36738372 DOI: 10.1007/s00894-023-05452-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
CONTEXT [2,2'-Bi(1,3,4-oxadiazole)]-5,5'-dinitramide (ICM-101), 2,4,6-triamino-5-nitropyrimidine-1,3-dioxide (ICM-102), and 6-nitro-7-azido-pyrazol[3,4-d][1,2,3]triazine-2-oxide (ICM-103) are excellent China-made explosives, but their performance under external electric fields (EEF) has never been explored, especially sensitivity. To study the induction effect of EEF on it, the chemical reactivity, electron localization function (ELF), spectrum, and other parameters were calculated by density functional theory. The results show that the increasing EEF can weaken the △EHOMO-LUMO (△EHOMO-LUMO = EHOMO-ELUMO) materials, making the stability worse and the sensitivity higher. The proportion of the positive electrostatic surface potential area is also smaller under the increasing EEF, indicating that ICM molecules are becoming more and more unstable. The ELF and localized orbital locator (LOL) decrease with the increase of EEF strength, which suggests that the trigger bond length increases, the EBDE decreases, and the molecular sensitivity increases. When the intensity of EEF increases, the absorption peak of the molecular spectrum gradually redshifts, and even a weak new absorption peak appears, indicating that the color of the material may change. Finally, EEF strength affects electron density, nitro charge, and chemical reactivity parameters. METHODS Gaussian 16 software was used for calculation. The calculation levels are B3LYP/6-311G+ (d, p) and B3LYP/Def2-TZVPP. The optimized structure has a local true minimum energy on the potential energy surface and no imaginary frequency. Multiwfn 3.8 and VMD 1.9.3 were used in this work to analyze the ICM series of energetic material wave functions. The strength range of EEF is 0.000-0.016 a.u., and the increasing gradient is 0.002 a.u.
Collapse
|
4
|
Zhao X, Zhu W. Recent advances in studying the nonnegligible role of noncovalent interactions in various types of energetic molecular crystals. CrystEngComm 2022. [DOI: 10.1039/d2ce00984f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This highlight summarizes the research progress on the considerable effects of noncovalent interactions on diverse types of energetic materials and enlighten us to explore new factors that affect the key performance of explosives.
Collapse
Affiliation(s)
- Xiao Zhao
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Weihua Zhu
- Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
5
|
Zhao C, Zhang Z, Yu Q, Yang F, Fan G, Yu K. Comparative Study of the Decomposition Mechanism and Kinetics of Biimidazole-Based Energetic Explosives. J Phys Chem A 2020; 124:3672-3678. [PMID: 32286070 DOI: 10.1021/acs.jpca.0c01820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It is well known that imidazoles, possessing two or more nitro substituents, are potential candidates for highly energetic explosives with detonation parameters comparable to those of 1,3,5-trinitro-1,3,5-triazacyclohexane (RDX) and 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane. 4,4',5,5'-Tetranitro-2,2'-bi-imidazole (TNBI) is a typical imidazole explosive with energy equivalent to that of RDX but suffers from low sensitivity (impact sensitivity 7 J). 1,1'-Diamino-4,4',5,5'-tetranitro-2,2'-biimidazole (DATNBI), a derivative of TNBI, possesses two -NH2 groups and has a higher detonation velocity (9063 m s-1) and lower impact sensitivity of 15 J, which indicates great potential for future applications. Examination of the thermal decomposition mechanism and kinetics of TNBI and DATNBI gives a more comprehensive view of the influence that the -NH2 group has on the sensitivity and storage safety of the energetic explosive-based TNBI molecular skeleton. Herein, the thermal decomposition mechanism is studied, showing that detachment of -NH2 groups from DATNBI generates 1-diamino-4,4',5,5'-tetranitro-2,2'-biimidazole (ATNBI) and TNBI and induces self-decomposition. Although the decomposition peak temperature of DATNBI is significantly lower than that of TNBI at the same heating rate; its self-accelerating decomposition temperature (50 kg) is only 4 K lower. Therefore, the -NH2 group displays good ability of reducing sensitivity but has no influence on storage safety of DATNBI.
Collapse
Affiliation(s)
- Chuande Zhao
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), P.O. Box 919-327, Mianyang, Sichuan 621900, People's Republic of China
| | - Zhenqi Zhang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), P.O. Box 919-327, Mianyang, Sichuan 621900, People's Republic of China
| | - Qian Yu
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), P.O. Box 919-327, Mianyang, Sichuan 621900, People's Republic of China
| | - Fang Yang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), P.O. Box 919-327, Mianyang, Sichuan 621900, People's Republic of China
| | - Guijuan Fan
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), P.O. Box 919-327, Mianyang, Sichuan 621900, People's Republic of China
| | - Kun Yu
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), P.O. Box 919-327, Mianyang, Sichuan 621900, People's Republic of China
| |
Collapse
|