1
|
Li W, Xu M, Xu HX, Wang X, Huang W. Metamaterial Absorbers: From Tunable Surface to Structural Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202509. [PMID: 35604541 DOI: 10.1002/adma.202202509] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Since the first demonstration, remarkable progress has been made in the theoretical analysis, structural design, numerical simulation, and potential applications of metamaterial absorbers (MAs). With the continuous advancement of novel materials and creative designs, the absorption of MAs is significantly improved over a wide frequency spectrum from microwaves to the optical regime. Further, the integration of active elements into the MA design allows the dynamical manipulation of electromagnetic waves, opening a new platform to push breakthroughs in metadevices. In the last several years, numerous efforts have been devoted to exploring innovative approaches for incorporating tunability to MAs, which is highly desirable because of the progressively increasing demand on designing versatile metadevices. Here, a comprehensive and systematical overview of active MAs with adaptive and on-demand manner is presented, highlighting innovative materials and unique strategies to precisely control the electromagnetic response. In addition to the mainstream method by manipulating periodic patterns, two additional approaches, including tailoring dielectric spacer and transforming overall structure are called back. Following this, key parameters, such as operating frequency, relative tuning range, and switching speed are summarized and compared to guide for optimum design. Finally, potential opportunities in the development of active MAs are discussed.
Collapse
Affiliation(s)
- Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - He-Xiu Xu
- Air and Missile Defense College, Air Force Engineering University, Xi'an, 710051, P. R. China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China
| |
Collapse
|
2
|
Tang X, Wang S, Liang Y, Bai D, Xu J, Wang Y, Chen C, Liu X, Wu S, Wen Y, Jiang D, Zhang Z. High-performance, self-powered flexible MoS 2 photodetectors with asymmetric van der Waals gaps. Phys Chem Chem Phys 2022; 24:7323-7330. [PMID: 35262113 DOI: 10.1039/d1cp05602f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With an urgent demand for low-energy-consumption and wearable devices, it is desirable to find an easy, effective, and low-cost method to fabricate self-powered flexible photodetectors with simple configurations and high-performance. Self-powered photodetectors are normally fabricated based on either two different materials or the same material in contact with two different metal electrodes. Here, a flexible MoS2 photodetector with the same Au electrodes was fabricated on a polyethylene terephthalate (PET) substrate which exhibits self-powered properties. To our knowledge, its configuration is the simplest, and the fabrication process is easy to implement. At a bias of 0 V, the photodetector exhibits a high responsivity of 431 mA W-1, a short response/recovery time of 40 ms/40 ms, and excellent flexibility. Compared with those at a bias of 2 V, a dark current is sufficiently suppressed, and the response/recovery speed is significantly improved. It is found that the driving force of the self-powered photodetector is provided by the asymmetric Schottky barriers originating from the spontaneous generation of two van der Waals gaps with different widths. The asymmetric barriers exist stably at the interfaces between the 2D material and Au electrodes as further observed for ReS2 or GaSe flakes, which show the generality of asymmetric Schottky barriers between the 2D material and Au electrodes. The discovery here thus gives a new way to generate asymmetric Schottky barriers and develop high-performance self-powered photodetectors.
Collapse
Affiliation(s)
- Xiaoqiu Tang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Shuai Wang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Yao Liang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Dongwei Bai
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Jiyuan Xu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Yingying Wang
- Department of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, P. R. China
| | - Chaoyu Chen
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Xiang Liu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Sumei Wu
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Yang Wen
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| | - Dayong Jiang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun 130022, P. R. China.
| | - Zhihua Zhang
- School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, P. R. China.
| |
Collapse
|