1
|
Yang B, Zhao T, Ji S, Liu Y, Xu M, Lu B. Molecular dynamics simulations of the interfacial behaviors and photo-oxidation of phytosterol under different emulsion oil content. Food Chem 2024; 451:139292. [PMID: 38663239 DOI: 10.1016/j.foodchem.2024.139292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/26/2024]
Abstract
Phytosterol, recognized for its health benefits, is predominantly extracted from plants and exhibits significantly reduced stability under varying light conditions. Their photooxidation is significantly influenced by emulsion interfaces. This study examined the mechanism of interface structure on phytosterol photooxidation with unparalleled molecular precision, utilizing molecular dynamics simulations and experimental procedures. Hydrogen bonding between the hydroxyl group at the C3 position of phytosterols and water molecules, coupled with van der Waals forces between the hydrophobic regions and the oil phase, induced phytosterol molecules to disperse toward the interface. The elevated polarity of the oil phase, specifically in tributyrin, facilitated the permeation of water molecules into the oil phase. This was achieved by diminishing the emulsion's interfacial tension, thereby fostering the development of more interface or micelles, and accelerating the photooxidation process of phytosterols. These simulations unraveled that the preponderance of phytosterol distribution is localized and oxidized at the oil-water interface.
Collapse
Affiliation(s)
- Bowen Yang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Tian Zhao
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shengyang Ji
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yan Liu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Minghao Xu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Baiyi Lu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Zhang Y, Bux K, Attana F, Wei D, Haider S, Parkinson GN. Structural descriptions of ligand interactions to RNA quadruplexes folded from the non-coding region of pseudorabies virus. Biochimie 2024:S0300-9084(24)00139-1. [PMID: 38876382 DOI: 10.1016/j.biochi.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 05/02/2024] [Accepted: 06/12/2024] [Indexed: 06/16/2024]
Abstract
To rationalise the binding of specific ligands to RNA-quadruplex we investigated several naphthalene diimide ligands that interact with the non-coding region of Pseudorabies virus (PRV). Herein we report on the x-ray structure of the naphthalene diimide ND11 with an RNA G-quadruplex putative forming sequence from rPRV. Consistent with previously observed rPRV sequence it assembles into a bimolecular RNA G-quadruplex consisting of a pair of two tetrads stacked 3' to 5'. We observe that ND11 interacts by binding on both the externally available 5' and 3' quartets. The CUC (loop 1) is structurally altered to enhance the 5' mode of interaction. These loop residues are shifted significantly to generate a new ligand binding pocket whereas the terminal A14 residue is lifted away from the RNA G-quadruplex tetrad plane to be restacked above the bound ND11 ligand NDI core. CD analysis of this family of NDI ligands shows consistency in the spectra between the different ligands in the presence of the rPRV RNA G-quadruplex motif, reflecting a common folded topology and mode of ligand interaction. FRET melt assay confirms the strong stabilising properties of the tetrasubstituted NDI compounds and the contributions length of the substituted groups have on melt temperatures.
Collapse
Affiliation(s)
- Yashu Zhang
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK; Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Khair Bux
- Faculty of Life Science, Shaheed Zulfikar Ali Bhutto Institute of Science and Technology, Karachi, 75600, Pakistan
| | - Fedaa Attana
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK
| | - Dengguo Wei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK
| | - Gary N Parkinson
- Department of Pharmaceutical and Biological Chemistry, University College London School of Pharmacy, London, WC1N 1AX, UK.
| |
Collapse
|
3
|
Cook I, Leyh TS. Sterol-activated amyloid beta fibril formation. J Biol Chem 2023; 299:105445. [PMID: 37949224 PMCID: PMC10704437 DOI: 10.1016/j.jbc.2023.105445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/23/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023] Open
Abstract
The metabolic processes that link Alzheimer's disease (AD) to elevated cholesterol levels in the brain are not fully defined. Amyloid beta (Aβ) plaque accumulation is believed to begin decades prior to symptoms and to contribute significantly to the disease. Cholesterol and its metabolites accelerate plaque formation through as-yet-undefined mechanisms. Here, the mechanism of cholesterol (CH) and cholesterol 3-sulfate (CS) induced acceleration of Aβ42 fibril formation is examined in quantitative ligand binding, Aβ42 fibril polymerization, and molecular dynamics studies. Equilibrium and pre-steady-state binding studies reveal that monomeric Aβ42•ligand complexes form and dissociate rapidly relative to oligomerization, that the ligand/peptide stoichiometry is 1-to-1, and that the peptide is likely saturated in vivo. Analysis of Aβ42 polymerization progress curves demonstrates that ligands accelerate polymer synthesis by catalyzing the conversion of peptide monomers into dimers that nucleate the polymerization reaction. Nucleation is accelerated ∼49-fold by CH, and ∼13,000-fold by CS - a minor CH metabolite. Polymerization kinetic models predict that at presumed disease-relevant CS and CH concentrations, approximately half of the polymerization nuclei will contain CS, small oligomers of neurotoxic dimensions (∼12-mers) will contain substantial CS, and fibril-formation lag times will decrease 13-fold relative to unliganded Aβ42. Molecular dynamics models, which quantitatively predict all experimental findings, indicate that the acceleration mechanism is rooted in ligand-induced stabilization of the peptide in non-helical conformations that readily form polymerization nuclei.
Collapse
Affiliation(s)
- Ian Cook
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Thomas S Leyh
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
4
|
Hazra R, Roy D. Monosaccharide induced temporal delay in cholesterol self-aggregation. J Biomol Struct Dyn 2022; 41:3205-3217. [PMID: 35254222 DOI: 10.1080/07391102.2022.2048076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Self-assembly of cholesterol (CHL) is infamous for its diverse deleterious effects on human health. Clinical research over several decades indicates that a diet rich in CHL typically leads to arterial plaques, cataracts and gall stones among others. Carbohydrates like the β-glucans efficiently lower serum CHL, possibly by inhibiting CHL absorption in the digestive tract. Using molecular dynamics simulations, we explore how β-D-glucose (BGLC), the building block of β-glucans, interferes with CHL aggregation. BGLC slows down CHL diffusion and disrupts the formation of the robust hydrophobic CHL assembly. Estimation of the translational entropy of the CHL molecules shows the extent of retardation induced by BGLC. Coordination numbers obtained from the adjacency matrix and collective variable analysis of the packing of the CHL molecules in presence of BGLC show the time evolution of CHL aggregation. In presence of BGLC, small isolated CHL islands form, consolidate and disintegrate over time as compared to the blank CHL system. The predominance of smaller CHL clusters is an effect of the significant retardation of the translational motion of CHL molecules induced by BGLC.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rituparna Hazra
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Durba Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Pandey S, Xiang Y, Friedrich D, Leng Y, Mao H. Direct Measurement of Intermolecular Mechanical Force for Nonspecific Interactions between Small Molecules. J Phys Chem Lett 2021; 12:11316-11322. [PMID: 34780182 PMCID: PMC8778946 DOI: 10.1021/acs.jpclett.1c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mechanical force can evaluate intramolecular interactions in macromolecules. Because of the rapid motion of small molecules, it is extremely challenging to measure mechanical forces of nonspecific intermolecular interactions. Here, we used optical tweezers to directly examine the intermolecular mechanical force (IMMF) of nonspecific interactions between two cholesterols. We found that IMMFs of dimeric cholesterol complexes were dependent on the orientation of the interaction. The surprisingly high IMMF in cholesterol dimers (∼30 pN) is comparable to the mechanical stability of DNA secondary structures. Using Hess-like cycles, we quantified that changes in free energy of solubilizing cholesterol (ΔGsolubility) by β-cyclodextrin (βCD) and methylated βCD (Me-βCD) were as low as -16 and -27 kcal/mol, respectively. Compared to the ΔGsolubility of cholesterols in water (5.1 kcal/mol), these values indicated that cyclodextrins can easily solubilize cholesterols. Our results demonstrated that the IMMF can serve as a generic and multipurpose variable to dissect nonspecific intermolecular interactions among small molecules into orientational components.
Collapse
Affiliation(s)
- Shankar Pandey
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Yuan Xiang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Dirk Friedrich
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Yongsheng Leng
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
6
|
Jia L, Yang J, Cui P, Wu D, Wang S, Hou B, Zhou L, Yin Q. Uncovering solubility behavior of Prednisolone form II in eleven pure solvents by thermodynamic analysis and molecular simulation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Pedersen JA, Spanget-Larsen J. Gallate semiquinone radical tri-anion. Experimental and theoretical studies of the 13C hyperfine coupling constants. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Gotzias A, Tocci E, Sapalidis A. On the Consistency of the Exfoliation Free Energy of Graphenes by Molecular Simulations. Int J Mol Sci 2021; 22:ijms22158291. [PMID: 34361058 PMCID: PMC8347420 DOI: 10.3390/ijms22158291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 01/04/2023] Open
Abstract
Monolayer graphene is now produced at significant yields, by liquid phase exfoliation of graphites in solvents. This has increased the interest in molecular simulation studies to give new insights in the field. We use decoupling simulations to compute the exfoliation free energy of graphenes in a liquid environment. Starting from a bilayer graphene configuration, we decouple the Van der Waals interactions of a graphene monolayer in the presence of saline water. Then, we introduce the monolayer back into water by coupling its interactions with water molecules and ions. A different approach to compute the graphene exfoliation free energy is to use umbrella sampling. We apply umbrella sampling after pulling the graphene monolayer on the shear direction up to a distance from a bilayer. We show that the decoupling and umbrella methods give highly consistent free energy results for three bilayer graphene samples with different size. This strongly suggests that the systems in both methods remain closely in equilibrium as we move between the states before and after the exfoliation. Therefore, the amount of nonequilibrium work needed to peel the two layers apart is minimized efficiently.
Collapse
Affiliation(s)
- Anastasios Gotzias
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology INN, 15310 Athens, Greece;
- Correspondence: ; Tel.: +30-210-6503408
| | - Elena Tocci
- Institute on Membrane Technology ITM–CNR, National Research Council, 87036 Rende, Italy;
| | - Andreas Sapalidis
- National Centre for Scientific Research “Demokritos”, Institute of Nanoscience and Nanotechnology INN, 15310 Athens, Greece;
| |
Collapse
|
9
|
Reinholdt P, Joensen LE, Petersen D, Szomek M, Mularski A, Simonsen AC, Kongsted J, Wüstner D. Photophysical and Structural Characterization of Intrinsically Fluorescent Sterol Aggregates. J Phys Chem B 2021; 125:5838-5852. [PMID: 34061522 DOI: 10.1021/acs.jpcb.1c00628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Self-association of cholesterol into aggregates and crystals is a hallmark of developing atherosclerosis. Intrinsically fluorescent sterols, such as dehydroergosterol (DHE), can be used to study sterol aggregation by fluorescence spectroscopy and microscopy, but a thorough understanding of DHE's photophysical and structural properties in the aggregated state is missing. Here, we show that DHE forms submicron fluorescent aggregates when evaporated from an ethanol solution. Using atomic force microscopy, we find that DHE, like cholesterol, forms compact oblate-shape aggregates of <100 nm in diameter. DHE's fluorescence is lowered in the aggregate compared to the monomeric form, and characteristic spectral changes accompany the aggregation process. Electronic structure calculations of DHE dimers in water indicate that Frenkel-type exciton coupling contributes to the lowered DHE fluorescence in the aggregates. Using molecular dynamics (MD) simulations, we show that DHE forms compact aggregates on the nanosecond scale and with strong intermolecular attraction, in which a broad range of orientations, and therefore electronic couplings, will take place. Tight packing of DHE in aggregates also lowers the apparent absorption cross section, further reducing the molecular brightness of the aggregates. Our results pave the way for systematic solubility studies of intrinsically fluorescent analogues of biologically relevant sterols.
Collapse
Affiliation(s)
- Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Lütje E Joensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Daniel Petersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Maria Szomek
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Anna Mularski
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
10
|
Trimdale A, Mishnev A, Bērziņš A. Combined Use of Structure Analysis, Studies of Molecular Association in Solution, and Molecular Modelling to Understand the Different Propensities of Dihydroxybenzoic Acids to Form Solid Phases. Pharmaceutics 2021; 13:734. [PMID: 34065675 PMCID: PMC8156891 DOI: 10.3390/pharmaceutics13050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
The arrangement of hydroxyl groups in the benzene ring has a significant effect on the propensity of dihydroxybenzoic acids (diOHBAs) to form different solid phases when crystallized from solution. All six diOHBAs were categorized into distinctive groups according to the solid phases obtained when crystallized from selected solvents. A combined study using crystal structure and molecule electrostatic potential surface analysis, as well as an exploration of molecular association in solution using spectroscopic methods and molecular dynamics simulations were used to determine the possible mechanism of how the location of the phenolic hydroxyl groups affect the diversity of solid phases formed by the diOHBAs. The crystal structure analysis showed that classical carboxylic acid homodimers and ring-like hydrogen bond motifs consisting of six diOHBA molecules are prominently present in almost all analyzed crystal structures. Both experimental spectroscopic investigations and molecular dynamics simulations indicated that the extent of intramolecular bonding between carboxyl and hydroxyl groups in solution has the most significant impact on the solid phases formed by the diOHBAs. Additionally, the extent of hydrogen bonding with solvent molecules and the mean lifetime of solute-solvent associates formed by diOHBAs and 2-propanol were also investigated.
Collapse
Affiliation(s)
- Aija Trimdale
- Faculty of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006 Riga, Latvia;
| | - Agris Bērziņš
- Faculty of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia
| |
Collapse
|
11
|
Interaction of lipid-free apolipoprotein A-I with cholesterol revealed by molecular modeling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140614. [PMID: 33548491 DOI: 10.1016/j.bbapap.2021.140614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
We report the modeling of the interaction of differently self-associated lipid-free apoA-I with cholesterol monomer and tail-to-tail (TT) or face-to-face (FF) cholesterol dimer. Cholesterol dimerization is exploited to reconcile the existing experimental data on cholesterol binding to apoA-I with extremely low critical micelle concentration of cholesterol. Two crystal structures of 1-43 N-truncated apolipoprotein Δ(1-43)A-I tetramer (PDB ID: 1AV1, structure B), 185-243 C-truncated apolipoprotein Δ(185-243)A-I dimer (PDB ID: 3R2P, structure M) were analyzed. Cholesterol monomers bind to multiple binding sites in apoA-I monomer, dimer and tetramer with low, moderate and high energy (-10 to -28 kJ/mol with Schrödinger package), still insufficient to overcome the thermodynamic restriction by cholesterol micellization (-52.8 kJ/mol). The binding sites partially coincide with the putative cholesterol-binding motifs. However, apoA-I monomer and dimer existing in structure B, that contain nonoverlapping and non-interacting pairs of binding sites with high affinity for TT and FF cholesterol dimers, can bind in common 14 cholesterol molecules that correspond to existing values. ApoA-I monomer and dimer in structure M can bind in common 6 cholesterol molecules. The values of respective total energy of cholesterol binding up to 64.5 and 67.0 kJ/mol for both B and M structures exceed the free energy of cholesterol micellization. We hypothesize that cholesterol dimers may simultaneously interact with extracellular monomer and dimer of lipid-free apoA-I, that accumulate at acid pH in atheroma. The thermodynamically allowed apolipoprotein-cholesterol interaction outside the macrophage may represent a new mechanism of cholesterol transport by apoA-I from atheroma, in addition to ABCA1-mediated cholesterol efflux.
Collapse
|
12
|
Sanjeev BS, Chitara D. Big Data over Cloud: Enabling Drug Design Under Cellular Environment. BIG DATA ANALYTICS 2021. [DOI: 10.1007/978-3-030-93620-4_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
13
|
Spanget-Larsen J. Semiquinone radical anions derived from 2,3-dimethylchrysazin, 7-deoxyaklavinone, and aclacinomycin T. Computational studies of the influence of aprotic and protic solvents on the electron spin resonance spectra. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Chrysazin semiquinone radical anion. A theoretical study of the influence of the solvent on the electron spin resonance spectrum. COMPUT THEOR CHEM 2020. [DOI: 10.1016/j.comptc.2020.112878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|