1
|
Ge S, Liu S. Effect of Apolar Chain Grafting Density on Mobile-Phase Transport Properties Revealed by Molecular Simulations. J Phys Chem B 2025; 129:2801-2810. [PMID: 40009745 DOI: 10.1021/acs.jpcb.5c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The alkyl-modified surfaces are routinely utilized in high-performance liquid chromatography (HPLC). This study investigates the effect of grafting density on the transport and structure of acetonitrile (ACN) solutions across dimethyloctadecylsilane-modified surfaces, utilizing molecular dynamics (MD) simulations as a probing tool. Simulation results reveal that as the grafting density increases, the conformation of grafted chains transitions from a relatively disordered, reclining state to a more ordered, upright configuration. As a result, the end-to-end distance of the grafted chain rises with the increase of grafting density, subsequently influencing the position and magnitude of adsorption peaks, as well as the diffusion coefficient of ACN solution on the grafted surface. Further analysis indicates that under the influence of Couette flow, increased grafting density reduces both the effective viscosity and the hydrodynamic penetration length of the ACN solution, indicating the flow phase being constrained by the grafted chains and thus inhibiting its effective penetration into their interiors. Additionally, the effective viscosity shows shear-thinning behavior with an increasing shear rate. What is more is that a slip phenomenon emerges on the ungrafted surface, whereas no such slip is observed on the grafted surface, and the slip length increases in proportion to the rise in the applied shear rate. These simulation findings underscore the subtle interplay between the structure and transport properties of the molecular liquids at the grafted interface, which provide insights for improving the design of grafted functional materials employed in advanced separation technologies.
Collapse
Affiliation(s)
- Shuhao Ge
- School of Materials Science and Engineering, Sun Yat-sen University, Higher Education Megacenter, Guangzhou 510006, P. R. China
| | - Shule Liu
- School of Materials Science and Engineering, Sun Yat-sen University, Higher Education Megacenter, Guangzhou 510006, P. R. China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Sun Yat-sen University, Higher Education Megacenter, Guangzhou 510006, P. R. China
| |
Collapse
|
2
|
Ali A, Cole DR, Striolo A. Understanding the Aggregation of Model Island and Archipelago Asphaltene Molecules near Kaolinite Surfaces using Molecular Dynamics. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2023; 37:11662-11674. [PMID: 37609063 PMCID: PMC10440792 DOI: 10.1021/acs.energyfuels.3c00504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/29/2023] [Indexed: 08/24/2023]
Abstract
The solubility of asphaltenes in hydrocarbons changes with pressure, composition, and temperature, leading to precipitation and deposition, thereby causing one of the crucial problems that negatively affects oil production, transportation, and processing. Because, in some circumstances, it might be advantageous to promote asphaltene agglomeration into small colloidal particles, molecular dynamics simulations were conducted here to understand the impacts of a chemical additive inspired by cyclohexane on the mechanism of aggregation of model island and archipelago asphaltene molecules in toluene. We compared the results in the presence and absence of a kaolinite surface at 300 and 400 K. Cluster size analyses, radial distribution functions, angles between asphaltenes, radius of gyration, and entropic and energetic calculations were used to provide insights on the behavior of these systems. The results show that the hypothetical additive inspired by cyclohexane promoted the aggregation of both asphaltenes. Structural differences were observed among the aggregates obtained in our simulations. These differences are attributed to the number of aromatic cores and side chains on the asphaltene molecules as well as to that of heteroatoms. For the island structure, aggregation in the bulk phase was less pronounced than that in the proximity of the kaolinite surface, whereas the opposite was observed for the archipelago structure. In both cases, the additive promoted stacking of asphaltenes, yielding more compact aggregates. The results provided insights into the complex nature of asphaltene aggregation, although computational approaches that can access longer time and larger size scales should be chosen for quantifying emergent meso- and macroscale properties of systems containing asphaltenes in larger numbers than those that can currently be sampled via atomistic simulations.
Collapse
Affiliation(s)
- Azeezat Ali
- Department
of Chemical Engineering, University College
London, London WC1E 6BT, United
Kingdom
| | - David R. Cole
- School
of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alberto Striolo
- Department
of Chemical Engineering, University College
London, London WC1E 6BT, United
Kingdom
- School
of Sustainable Chemical, Biological and Materials Engineering, The University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
3
|
Ryu G, Park K, Kim H. Interfacial properties of liquid metal immersed in various liquids. J Colloid Interface Sci 2022; 621:285-294. [DOI: 10.1016/j.jcis.2022.04.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 11/15/2022]
|
4
|
Liang F, Pan G, Wang W, Lu J, Wei X, Ding J, Liu S. Enhanced thermal transport at metal/molten salt interface in nanoconfinement: A molecular dynamics study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Hermawan A, Amrillah T, Riapanitra A, Ong W, Yin S. Prospects and Challenges of MXenes as Emerging Sensing Materials for Flexible and Wearable Breath-Based Biomarker Diagnosis. Adv Healthc Mater 2021; 10:e2100970. [PMID: 34318999 DOI: 10.1002/adhm.202100970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/21/2021] [Indexed: 12/20/2022]
Abstract
A fully integrated, flexible, and functional sensing device for exhaled breath analysis drastically transforms conventional medical diagnosis to non-invasive, low-cost, real-time, and personalized health care. 2D materials based on MXenes offer multiple advantages for accurately detecting various breath biomarkers compared to conventional semiconducting oxides. High surface sensitivity, large surface-to-weight ratio, room temperature detection, and easy-to-assemble structures are vital parameters for such sensing devices in which MXenes have demonstrated all these properties both experimentally and theoretically. So far, MXenes-based flexible sensor is successfully fabricated at a lab-scale and is predicted to be translated into clinical practice within the next few years. This review presents a potential application of MXenes as emerging materials for flexible and wearable sensor devices. The biomarkers from exhaled breath are described first, with emphasis on metabolic processes and diseases indicated by abnormal biomarkers. Then, biomarkers sensing performances provided by MXenes families and the enhancement strategies are discussed. The method of fabrications toward MXenes integration into various flexible substrates is summarized. Finally, the fundamental challenges and prospects, including portable integration with Internet-of-Thing (IoT) and Artificial Intelligence (AI), are addressed to realize marketization.
Collapse
Affiliation(s)
- Angga Hermawan
- Faculty of Textile Science and Technology Shinshu University 3‐15‐1 Tokida Ueda Nagano 386‐8567 Japan
- Institute of Multidisciplinary Research for Advanced Material (IMRAM) Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai Miyagi 980‐8577 Japan
| | - Tahta Amrillah
- Department of Nanotechnology Faculty of Advanced Technology and Multidiscipline Universitas Airlangga Surabaya 60115 Indonesia
| | - Anung Riapanitra
- Department of Chemistry Faculty of Mathematics and Natural Science Jenderal Soedirman University Purwokerto 53122 Indonesia
| | - Wee‐Jun Ong
- School of Energy and Chemical Engineering Xiamen University Malaysia Selangor Darul Ehsan 43900 Malaysia
- Center of Excellence for NaNo Energy & Catalysis Technology (CONNECT) Xiamen University Malaysia Sepang Selangor Darul Ehsan 43900 Malaysia
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Material (IMRAM) Tohoku University 2‐1‐1 Katahira, Aoba‐ku Sendai Miyagi 980‐8577 Japan
| |
Collapse
|
6
|
Liang F, Ding J, Liu S. Collective Solvation and Transport at Tetrahydrofuran-Silica Interfaces for Separation of Aromatic Compounds: Insight from Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2091-2103. [PMID: 33533241 DOI: 10.1021/acs.langmuir.0c03077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We have performed umbrella sampling molecular dynamics simulations to study the separation mechanism of aromatic compounds at the tetrahydrofuran (THF)-methanol-silica interface by liquid chromatography. Solute molecules with different polarities (naphthol and naphthalene) are selected as representative aromatic compounds. For the polar solute (naphthol), the free energy profile shows a deep minimum near the THF-silica interface, suggesting strong interactions with the polar surface. When methanol is added to the interface, there is a sharp increase in naphthol's free energy minimum, and the corresponding diffusion dynamics also undergoes a dramatic change. These findings explain the fast separation mechanism in recent experiments of separating fused ring compounds in asphaltenes with liquid chromatography. Further solvation structure and orientation analysis suggest that apolar and polar solutes may find their own comfort zones several angstroms away from the interface, and their phenyl ring's orientations would undergo a parallel-to-perpendicular transition as the solute molecule moves away from the surface. Extending our simulation studies to systems with different solute concentrations reveals that there is a decrease in the adsorption free energy accompanied by enhanced surface diffusion as the solute concentration increases, which is related to the crowding in the interfacial layers. Our simulation analysis gives a detailed microscopic description of solute solvation and transport at the THF-silica chromatography interface and will be helpful for improving separation protocols in future applications.
Collapse
|
7
|
Ren K, Wang YP, Liu S. The role of solute polarity on methanol-silica interfacial solvation: a molecular dynamics study. Phys Chem Chem Phys 2021; 23:1092-1102. [PMID: 33346761 DOI: 10.1039/d0cp04422a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The solvation structure and dynamics of small organic molecules at the methanol-silica interface are important for understanding the reaction dynamics in heterogeneous catalysis as well as the transport mechanisms in liquid chromatography. The role of solute polarity in interfacial solvation at the methanol-silica interface has been investigated via umbrella sampling molecular dynamics (MD) simulations and 1,3-propanediol and n-pentane were selected as representative species of polar and apolar solutes. Free energy calculations reveal that it took a similar free energy cost to transfer both solute molecules from the interface to the bulk, despite the huge difference in their polarities. The 1,3-propendiol molecule can penetrate the adsorbed methanol layer and form hydrogen bonds with the silica surface with its backbone perpendicular to the silica surface, resulting in a significant slowdown of translational and rotational dynamics. Further analysis of solvent density and solute orientations suggest that at the minimum of the adsorption free energy curve, the 1,3-propanediol molecule is in a desolvated state, while n-pentane is in a solvated state. The collective effect of solute concentration has also been studied by unbiased MD simulations, and the free energy barriers of transferring the solute molecule from the interface to bulk, as well as the parallel diffusion coefficients at the interface, show a non-monotonic dependence on solute concentration, which can be related to the crowded environment in the interfacial layers.
Collapse
Affiliation(s)
- Kezhou Ren
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Yong-Peng Wang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Shule Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|
8
|
Wang YP, Liang F, Liu S. Molecular dynamics simulations of amino acid adsorption and transport at the acetonitrile–water–silica interface: the role of side chains. RSC Adv 2021; 11:21666-21677. [PMID: 35478806 PMCID: PMC9034086 DOI: 10.1039/d1ra03982b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 11/24/2022] Open
Abstract
The solvation and transport of amino acid residues at liquid–solid interfaces have great importance for understanding the mechanism of separation of biomolecules in liquid chromatography. This study uses umbrella sampling molecular dynamics simulations to study the adsorption and transport of three amino acid molecules with different side chains (phenylalanine (Phe), leucine (Leu) and glutamine (Gln)) at the silica–water–acetonitrile interface in liquid chromatography. Free energy analysis shows that the Gln molecule has stronger binding affinity than the other two molecules, indicating the side chain polarity may play a primary role in adsorption at the liquid–solid interface. The Phe molecule with a phenyl side chain exhibits stronger adsorption free energy than Leu with a non-polar side chain, which can be ascribed to the better solvated configuration of Phe. Further analysis of molecular orientations found that the amino acid molecules with apolar side chains (Phe and Leu) have ‘standing up’ configurations at their stable adsorption state, where the polar functional groups are close to the interface and the side chain is far from the interface, whereas the amino acid molecule with a polar side chain (Gln) chooses the ‘lying’ configuration, and undergoes a sharp orientation transition when the molecule moves away from the silica surface. Extending our simulation studies to systems with different solute concentrations reveals that there is a decrease in the adsorption free energy as well as surface diffusion as the solute concentration increases, which is related to the crowding in the interfacial layers. This simulation study gives a detailed microscopic description of amino acid molecule solvation and transport at the acetonitrile–water–silica interface in liquid chromatography and will be helpful for understanding the retention mechanism for amino acid separation. The solvation and transport of amino acid residues at liquid–solid interfaces have great importance for understanding the mechanism of separation of biomolecules in liquid chromatography.![]()
Collapse
Affiliation(s)
- Yong-Peng Wang
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Fei Liang
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
| | - Shule Liu
- School of Materials Science and Engineering
- Sun Yat-sen University
- Guangzhou 510275
- P. R. China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education
| |
Collapse
|
9
|
Wang YP, Ren K, Liu S. The joint effect of surface polarity and concentration on the structure and dynamics of acetonitrile solution: a molecular dynamics simulation study. Phys Chem Chem Phys 2020; 22:10322-10334. [PMID: 32363373 DOI: 10.1039/d0cp00819b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interfacial properties of the acetonitrile (ACN)-water-silica interface have great implications in both liquid chromatography and heterogeneous catalysis. We have performed molecular dynamics (MD) simulations of ACN and water binary solutions to give a comprehensive study of the collective effect of silica surface polarity and ACN concentration on interfacial structures and dynamics by tuning both surface charges and ACN concentration. MD simulation results indicate that many properties in the liquid-solid interface region undergo a monotonic change as the silica surface is tuned from polar to apolar due to the weakening of hydrogen bonding, while their dependence on ACN concentration is presumably governed by the preferential adsorption of water at the silica surface over ACN. However, at apolar surfaces, the interfacial structures of both water and ACN behave like the liquid-vapor interface, and this resemblance leads to an enrichment of ACN at the interface as well as accelerated dynamics, which is very different from that in the bulk solution. The organization of ACN molecules at both polar and apolar surfaces can be attributed to the amphiphilic nature of ACN, by which the micro-heterogeneity domain formed can persist both in the bulk and at the liquid-solid interface. Moreover, extending diffusion analysis to the second layer of the interface shows that the interfacial transport pathways at polar surfaces are likely very different from that of apolar surfaces. These simulation results give a full spectrum description of the ACN/water liquid-solid interface at the microscopic level and will be helpful for explaining related spectroscopic experiments and understanding the microscopic mechanisms of separation protocols in current chromatography applications.
Collapse
Affiliation(s)
- Yong-Peng Wang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Kezhou Ren
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| | - Shule Liu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China.
| |
Collapse
|