1
|
Khatymov RV, Muftakhov MV, Tuktarov RF, Shchukin PV, Khatymova LZ, Pancras E, Terentyev AG, Petrov NI. Resonant electron capture by polycyclic aromatic hydrocarbon molecules: Effects of aza-substitution. J Chem Phys 2024; 160:124310. [PMID: 38533882 DOI: 10.1063/5.0195316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/07/2024] [Indexed: 03/28/2024] Open
Abstract
Resonant electron capture by aza and diaza derivatives of phenanthrene (7,8-benzoquinoline and 1,10-phenanthroline) and anthracene (acridine and phenazine) at incident free electron energies (Ee) in the range of 0-15 eV was studied. All compounds except 7,8-benzoquinoline form long-lived molecular ions (M-) at thermal electron energies (Ee ∼ 0 eV). Acridine and phenazine also form such ions at epithermal electron energies up to Ee = 1.5-2.5 eV. The lifetimes (τa) of M- with respect to electron autodetachment are proportional to the extent of aza-substitution and increase on going from molecules with bent geometry of the fused rings (azaphenanthrenes) to linear isomers (azaanthracenes). These regularities are due to an increase in the adiabatic electron affinities (EAa) of the molecules. The EAa values of the molecules under study were comprehensively assessed based on a comparative analysis of the measured τa values using the Rice-Ramsperger-Kassel-Marcus theory, the electronic structure analysis using the molecular orbital approach, as well as the density functional calculations of the total energy differences between the molecules and anions. The only fragmentation channel of M- ions from the compounds studied is abstraction of hydrogen atoms. When studying [M-H]- ions, electron autodetachment processes were observed, the τa values were measured, and the appearance energies were determined. A comparative analysis of the gas-phase acidity of the molecules and the EAa values of the [M-H]· radicals revealed their proportionality to the EAa values of the parent molecules.
Collapse
Affiliation(s)
- Rustem V Khatymov
- Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
| | - Mars V Muftakhov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya, 151, 450075 Ufa, Russia
| | - Renat F Tuktarov
- Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya, 151, 450075 Ufa, Russia
| | - Pavel V Shchukin
- Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya, 151, 450075 Ufa, Russia
| | - Lyaysan Z Khatymova
- Institute of Molecule and Crystal Physics, Ufa Federal Research Center, Russian Academy of Sciences, Prospekt Oktyabrya, 151, 450075 Ufa, Russia
| | - Eugene Pancras
- Ufa State Petroleum Technological University, ul. Kosmonavtov, 1, 450064 Ufa, Russia
| | - Andrey G Terentyev
- Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
| | - Nikolay I Petrov
- Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
| |
Collapse
|
2
|
Shchukin PV, Muftakhov MV, Khatymov RV, Tuktarov RF. Resonant electron capture by 5-Br-2′-deoxyuridine. J Chem Phys 2022; 156:104304. [DOI: 10.1063/5.0077009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The results of the study of resonant electron capture by molecules of 5-Br-2′-deoxyuridine (BrdUrd) over the range of electron energies from near zero to 14 eV are described. In the thermal energy range, long-lived molecular negative ions, unstable with respect to autoneutralization and dehalogenation, have been registered. Examination of the kinetics of these decay processes led us to the conclusion that the most probable structure for molecular negative ions is that with an extended C–Br bond, which was predicted earlier using quantum-chemical calculations. Estimates have shown that the BrdUrd molecule owns a significant electronic affinity of 0.93–1.38 eV. The most intense fragmentation channel leads to the abundant formation of Br− ions. The dissociative electron attachment cross section for Br− ions formation was estimated to amount to no less than 1.65 × 10−15 cm2, indirectly implying a fairly intense formation of complementary highly reactive deoxyuridine-5-yl particles. These particles are known to be responsible for the radiosensitizing properties of BrdUrd.
Collapse
Affiliation(s)
- P. V. Shchukin
- Institute of Molecule and Crystal Physics–Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya 151, Ufa 450075, Russia
| | - M. V. Muftakhov
- Institute of Molecule and Crystal Physics–Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya 151, Ufa 450075, Russia
| | - R. V. Khatymov
- Mendeleev University of Chemical Technology of Russia, Miusskaya square, 9, Moscow 125047, Russia
| | - R. F. Tuktarov
- Institute of Molecule and Crystal Physics–Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Prospekt Oktyabrya 151, Ufa 450075, Russia
| |
Collapse
|
3
|
Khatymov RV, Terentyev AG. Resonant electron capture negative ion mass spectrometry: the state of the art and the potential for solving analytical problems. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3132-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Skeletal Rearrangements of the C240 Fullerene: Efficient Topological Descriptors for Monitoring Stone–Wales Transformations. MATHEMATICS 2020. [DOI: 10.3390/math8060968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stone–Wales rearrangements of the fullerene surface are an uncharted field in theoretical chemistry. Here, we study them on the example of the giant icosahedral fullerene C240 to demonstrate the complex chemical mechanisms emerging on its carbon skeleton. The Stone–Wales transformations of C240 can produce the defected isomers containing heptagons, extra pentagons and other unordinary rings. Their formations have been described in terms of (i) quantum-chemically calculated energetic, molecular, and geometric parameters; and (ii) topological indices. We have found the correlations between the quantities from the two sets that point out the role of long-range topological defects in governing the formation and the chemical reactivity of fullerene molecules.
Collapse
|