1
|
Scott HL, Burns-Casamayor V, Dixson AC, Standaert RF, Stanley CB, Stingaciu LR, Carrillo JMY, Sumpter BG, Katsaras J, Qiang W, Heberle FA, Mertz B, Ashkar R, Barrera FN. Neutron spin echo shows pHLIP is capable of retarding membrane thickness fluctuations. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184349. [PMID: 38815687 PMCID: PMC11365786 DOI: 10.1016/j.bbamem.2024.184349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Cell membranes are responsible for a range of biological processes that require interactions between lipids and proteins. While the effects of lipids on proteins are becoming better understood, our knowledge of how protein conformational changes influence membrane dynamics remains rudimentary. Here, we performed experiments and computer simulations to study the dynamic response of a lipid membrane to changes in the conformational state of pH-low insertion peptide (pHLIP), which transitions from a surface-associated (SA) state at neutral or basic pH to a transmembrane (TM) α-helix under acidic conditions. Our results show that TM-pHLIP significantly slows down membrane thickness fluctuations due to an increase in effective membrane viscosity. Our findings suggest a possible membrane regulatory mechanism, where the TM helix affects lipid chain conformations, and subsequently alters membrane fluctuations and viscosity.
Collapse
Affiliation(s)
- Haden L Scott
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, United States of America
| | - Violeta Burns-Casamayor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States of America
| | - Andrew C Dixson
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, United States of America
| | - Robert F Standaert
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, United States of America; C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States of America; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Christopher B Stanley
- Shull Wollan Center - a Joint Institute for Neutron Sciences, Oak Ridge, TN 37831, United States of America; Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Laura-Roxana Stingaciu
- Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America; JCNS1, FZJ outstation at SNS, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Jan-Michael Y Carrillo
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America; Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, United States of America
| | - Bobby G Sumpter
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America; Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, United States of America
| | - John Katsaras
- Shull Wollan Center - a Joint Institute for Neutron Sciences, Oak Ridge, TN 37831, United States of America; Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Wei Qiang
- Department of Chemistry, the State University of New York, Binghamton, NY 13902, United States of America
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37920, United States of America
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States of America; West Virginia University Cancer Institute, Morgantown, WV 26506, United States of America
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, United States of America; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, United States of America.
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, United States of America.
| |
Collapse
|
2
|
Usuda H, Mishima Y, Noda K, Toyoshima T, Sakurai K, Takamura C, Takahashi A, Minami K, Kawamoto T. Vesicles exhibit high-performance removal of per-and polyfluoroalkyl substances (PFAS) depending on their hydrophobic groups. CHEMOSPHERE 2024; 363:142818. [PMID: 39002653 DOI: 10.1016/j.chemosphere.2024.142818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/26/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The removal of per- and polyfluoroalkyl substances (PFAS) from drinking water is urgently needed. Here, we demonstrated high performance of vesicles on PFAS adsorption. Vesicles used in this study were enclosed amphiphile bilayers keeping their hydrophobic groups inside and their hydrophilic groups outside in water. The distribution coefficient Kd of perfluorooctane sulfonic acid (PFOS) for vesicles was 5.3 × 105 L/kg, which is higher than that for granulated activated carbon (GAC), and Kd of perfluorooctanoic acid (PFOA) for vesicles was 103-104 L/kg. The removal efficiencies of PFOA and PFOS adsorption on DMPC vesicles were 97.1 ± 0.1% and 99.4 ± 0.2%, respectively. The adsorption behaviors of PFOA and PFOS on vesicles were investigated by changing the number of cis-double bonds in the hydrophobic chains of the vesicle constituents. Moreover, vesicles formed by membranes in the different phases were also tested. The results revealed that, when vesicles are formed of a membrane in the liquid-crystalline (liquid-like) phase, the adsorption amounts of both PFOA and PFOS increased as the cis-double bond in the hydrocarbon chains decreased, which is considered due to molecular shape similarity. When vesicles are formed of a membrane in the gel (solid-like) phase, they do not adsorb PFAS as much as in the liquid-crystalline phase, even though the hydrocarbon chains do not have any cis-double bond. Our findings demonstrate that vesicles can be utilized as PFAS adsorbents by optimizing the structure of vesicle constituents and their thermodynamical phase. Indeed, the vesicles (DMPC) were demonstrated that they can adsorb PFOA and PFOS, and be coagulated by a coagulant even in environmental water. The coagulation will enable the removal of PFOA and PFOS from the water after adsorption.
Collapse
Affiliation(s)
- Hatsuho Usuda
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan.
| | - Yoshie Mishima
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Keiko Noda
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Takahiro Toyoshima
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Koji Sakurai
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Chieko Takamura
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Akira Takahashi
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Kimitaka Minami
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Tohru Kawamoto
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan.
| |
Collapse
|
3
|
Shih KC, Leriche G, Liu CH, He J, John VT, Fang J, Barker JG, Nagao M, Yang L, Yang J, Nieh MP. Antivesiculation and Complete Unbinding of Tail-Tethered Lipids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1688-1697. [PMID: 38186288 DOI: 10.1021/acs.langmuir.3c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
We report the effect of tail-tethering on vesiculation and complete unbinding of bilayered membranes. Amphiphilic molecules of a bolalipid, resembling the tail-tethered molecular structure of archaeal lipids, with two identical zwitterionic phosphatidylcholine headgroups self-assemble into a large flat lamellar membrane, in contrast to the multilamellar vesicles (MLVs) observed in its counterpart, monopolar nontethered zwitterionic lipids. The antivesiculation is confirmed by small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cyro-TEM). With the net charge of zero and higher bending rigidity of the membrane (confirmed by neutron spin echo (NSE) spectroscopy), the current membrane theory would predict that membranes should stack with each other (aka "bind") due to dominant van der Waals attraction, while the outcome of the nonstacking ("unbinding") membrane suggests that the theory needs to include entropic contribution for the nonvesicular structures. This report pioneers an understanding of how the tail-tethering of amphiphiles affects the structure, enabling better control over the final nanoscale morphology.
Collapse
Affiliation(s)
| | - Geoffray Leriche
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | | - Jibao He
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | - Vijay T John
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, Louisiana 70118, United States
| | | | - John G Barker
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Jerry Yang
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | | |
Collapse
|
4
|
Nguyen MHL, Dziura D, DiPasquale M, Castillo SR, Kelley EG, Marquardt D. Investigating the cut-off effect of n-alcohols on lipid movement: a biophysical study. SOFT MATTER 2023. [PMID: 37357554 DOI: 10.1039/d2sm01583h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Cellular membranes are responsible for absorbing the effects of external perturbants for the cell's survival. Such perturbants include small ubiquitous molecules like n-alcohols which were observed to exhibit anesthetic capabilities, with this effect tapering off at a cut-off alcohol chain length. To explain this cut-off effect and complement prior biochemical studies, we investigated a series of n-alcohols (with carbon lengths 2-18) and their impact on several bilayer properties, including lipid flip-flop, intervesicular exchange, diffusion, membrane bending rigidity and more. To this end, we employed an array of biophysical techniques such as time-resolved small angle neutron scattering (TR-SANS), small angle X-ray scattering (SAXS), all atomistic and coarse-grained molecular dynamics (MD) simulations, and calcein leakage assays. At an alcohol concentration of 30 mol% of the overall lipid content, TR-SANS showed 1-hexanol (C6OH) increased transverse lipid diffusion, i.e. flip-flop. As alcohol chain length increased from C6 to C10 and longer, lipid flip-flop slowed by factors of 5.6 to 32.2. Intervesicular lipid exchange contrasted these results with only a slight cut-off at alcohol concentrations of 30 mol% but not 10 mol%. SAXS, MD simulations, and leakage assays revealed changes to key bilayer properties, such as bilayer thickness and fluidity, that correlate well with the effects on lipid flip-flop rates. Finally, we tie our results to a defect-mediated pathway for alcohol-induced lipid flip-flop.
Collapse
Affiliation(s)
- Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Dominik Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
- Department of Physics, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
5
|
Nakao H, Nagao M, Yamada T, Imamura K, Nozaki K, Ikeda K, Nakano M. Impact of transmembrane peptides on individual lipid motions and collective dynamics of lipid bilayers. Colloids Surf B Biointerfaces 2023; 228:113396. [PMID: 37311269 DOI: 10.1016/j.colsurfb.2023.113396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
The fluid nature of lipid bilayers is indispensable for the dynamic regulation of protein function and membrane morphology in biological membranes. Membrane-spanning domains of proteins interact with surrounding lipids and alter the physical properties of lipid bilayers. However, there is no comprehensive view of the effects of transmembrane proteins on the membrane's physical properties. Here, we investigated the effects of transmembrane peptides with different flip-flop-promoting abilities on the dynamics of a lipid bilayer employing complemental fluorescence and neutron scattering techniques. The quasi-elastic neutron scattering and fluorescence experiments revealed that lateral diffusion of the lipid molecules and the acyl chain motions were inhibited by the inclusion of transmembrane peptides. The neutron spin-echo spectroscopy measurements indicated that the lipid bilayer became more rigid but more compressible and the membrane viscosity increased when the transmembrane peptides were incorporated into the membrane. These results suggest that the inclusion of rigid transmembrane structures hinders individual and collective lipid motions by slowing down lipid diffusion and increasing interleaflet coupling. The present study provides a clue for understanding how the local interactions between lipids and proteins change the collective dynamics of the lipid bilayers, and therefore, the function of biological membranes.
Collapse
Affiliation(s)
- Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Michihiro Nagao
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD 20899-6102, USA; Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115, USA; Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Koki Imamura
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Koichi Nozaki
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
6
|
Nagao M, Seto H. Neutron scattering studies on dynamics of lipid membranes. BIOPHYSICS REVIEWS 2023; 4:021306. [PMID: 38504928 PMCID: PMC10903442 DOI: 10.1063/5.0144544] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/01/2023] [Indexed: 03/21/2024]
Abstract
Neutron scattering methods are powerful tools for the study of the structure and dynamics of lipid bilayers in length scales from sub Å to tens to hundreds nm and the time scales from sub ps to μs. These techniques also are nondestructive and, perhaps most importantly, require no additives to label samples. Because the neutron scattering intensities are very different for hydrogen- and deuterium-containing molecules, one can replace the hydrogen atoms in a molecule with deuterium to prepare on demand neutron scattering contrast without significantly altering the physical properties of the samples. Moreover, recent advances in neutron scattering techniques, membrane dynamics theories, analysis tools, and sample preparation technologies allow researchers to study various aspects of lipid bilayer dynamics. In this review, we focus on the dynamics of individual lipids and collective membrane dynamics as well as the dynamics of hydration water.
Collapse
Affiliation(s)
| | - Hideki Seto
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
7
|
Dziura M, Castillo SR, DiPasquale M, Gbadamosi O, Zolnierczuk P, Nagao M, Kelley EG, Marquardt D. Investigating the Effect of Medium Chain Triglycerides on the Elasticity of Pulmonary Surfactant. Chem Res Toxicol 2023; 36:643-652. [PMID: 36926887 DOI: 10.1021/acs.chemrestox.2c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
In recent years, vaping has increased in both popularity and ease of access. This has led to an outbreak of a relatively new condition known as e-cigarette/vaping-associated lung injury (EVALI). This injury can be caused by physical interactions between the pulmonary surfactant (PS) in the lungs and toxins typically found in vaping solutions, such as medium chain triglycerides (MCT). MCT has been largely used as a carrier agent within many cannabis products commercially available on the market. Pulmonary surfactant ensures proper respiration by maintaining low surface tensions and interface stability throughout each respiratory cycle. Therefore, any impediments to this system that negatively affect the efficacy of this function will have a strong hindrance on the individual's quality of life. Herein, neutron spin echo (NSE) and Langmuir trough rheology were used to probe the effects of MCT on the mechanical properties of pulmonary surfactant. Alongside a porcine surfactant extract, two lipid-only mimics of progressing complexity were used to study MCT effects in a range of systems that are representative of endogenous surfactant. MCT was shown to have a greater biophysical effect on bilayer systems compared to monolayers, which may align with biological data to propose a mechanism of surfactant inhibition by MCT oil.
Collapse
Affiliation(s)
- Maksymilian Dziura
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Stuart R Castillo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Omotayo Gbadamosi
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Piotr Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Michihiro Nagao
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,Department of Materials Science and Engineering, University of Maryland, College Park, Maryland 20742, United States.,Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Elizabeth G Kelley
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada.,Department of Physics, University of Windsor, Windsor, ON N9B 3P4, Canada
| |
Collapse
|
8
|
Schoch RL, Haran G, Brown FLH. Dynamic correlations in lipid bilayer membranes over finite time intervals. J Chem Phys 2023; 158:044112. [PMID: 36725516 DOI: 10.1063/5.0129130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent single-molecule measurements [Schoch et al., Proc. Natl. Acad. Sci. U. S. A. 118, e2113202118 (2021)] have observed dynamic lipid-lipid correlations in membranes with submicrometer spatial resolution and submillisecond temporal resolution. While short from an instrumentation standpoint, these length and time scales remain long compared to microscopic molecular motions. Theoretical expressions are derived to infer experimentally measurable correlations from the two-body diffusion matrix appropriate for membrane-bound bodies coupled by hydrodynamic interactions. The temporal (and associated spatial) averaging resulting from finite acquisition times has the effect of washing out correlations as compared to naive predictions (i.e., the bare elements of the diffusion matrix), which would be expected to hold for instantaneous measurements. The theoretical predictions are shown to be in excellent agreement with Brownian dynamics simulations of experimental measurements. Numerical results suggest that the experimental measurement of membrane protein diffusion, in complement to lipid diffusion measurements, might help to resolve the experimental ambiguities encountered for certain black lipid membranes.
Collapse
Affiliation(s)
- Rafael L Schoch
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Frank L H Brown
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
9
|
Basham CM, Spittle S, Sangoro J, El-Beyrouthy J, Freeman E, Sarles SA. Entrapment and Voltage-Driven Reorganization of Hydrophobic Nanoparticles in Planar Phospholipid Bilayers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54558-54571. [PMID: 36459500 DOI: 10.1021/acsami.2c16677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Engineered nanoparticles (NPs) possess diverse physical and chemical properties, which make them attractive agents for targeted cellular interactions within the human body. Once affiliated with the plasma membrane, NPs can become embedded within its hydrophobic core, which can limit the intended therapeutic functionality and affect the associated toxicity. As such, understanding the physical effects of embedded NPs on a plasma membrane is critical to understanding their design and clinical use. Here, we demonstrate that functionalized, hydrophobic gold NPs dissolved in oil can be directly trapped within the hydrophobic interior of a phospholipid membrane assembled using the droplet interface bilayer technique. This approach to model membrane formation preserves lateral lipid diffusion found in cell membranes and permits simultaneous imaging and electrophysiology to study the effects of embedded NPs on the electromechanical properties of the bilayer. We show that trapped NPs enhance ion conductance and lateral membrane tension in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) bilayers while lowering the adhesive energy of the joined droplets. Embedded NPs also cause changes in bilayer capacitance and area in response to applied voltage, which are nonmonotonic for DOPC bilayers. This electrophysical characterization can reveal NP entrapment without relying on changes in membrane thickness. By evaluating the energetic components of membrane tension under an applied potential, we demonstrate that these nonmonotonic, voltage-dependent responses are caused by reversible clustering of NPs within the unsaturated DOPC membrane core; aggregates form spontaneously at low voltages and are dispersed by higher transmembrane potentials of magnitude similar to those found in the cellular environment. These findings allow for a better understanding of lipid-dependent NP interactions, while providing a platform to study relationships between other hydrophobic nanomaterials and organic membranes.
Collapse
Affiliation(s)
- Colin M Basham
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| | - Joyce El-Beyrouthy
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Eric Freeman
- School of Environmental, Civil, Agricultural, and Mechanical Engineering, University of Georgia, Athens, Georgia30602, United States
| | - Stephen A Sarles
- Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee37996, United States
| |
Collapse
|
10
|
Heller WT. Small-Angle Neutron Scattering for Studying Lipid Bilayer Membranes. Biomolecules 2022; 12:1591. [PMID: 36358941 PMCID: PMC9687511 DOI: 10.3390/biom12111591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 09/23/2023] Open
Abstract
Small-angle neutron scattering (SANS) is a powerful tool for studying biological membranes and model lipid bilayer membranes. The length scales probed by SANS, being from 1 nm to over 100 nm, are well-matched to the relevant length scales of the bilayer, particularly when it is in the form of a vesicle. However, it is the ability of SANS to differentiate between isotopes of hydrogen as well as the availability of deuterium labeled lipids that truly enable SANS to reveal details of membranes that are not accessible with the use of other techniques, such as small-angle X-ray scattering. In this work, an overview of the use of SANS for studying unilamellar lipid bilayer vesicles is presented. The technique is briefly presented, and the power of selective deuteration and contrast variation methods is discussed. Approaches to modeling SANS data from unilamellar lipid bilayer vesicles are presented. Finally, recent examples are discussed. While the emphasis is on studies of unilamellar vesicles, examples of the use of SANS to study intact cells are also presented.
Collapse
Affiliation(s)
- William T Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
11
|
Wurl A, Ott M, Plato E, Meister A, Hamdi F, Kastritis PL, Blume A, Ferreira TM. Filling the Gap with Long n-Alkanes: Incorporation of C20 and C30 into Phospholipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8595-8606. [PMID: 35786894 DOI: 10.1021/acs.langmuir.2c00872] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Investigating how hydrophobic molecules mix with phospholipid bilayers and how they affect membrane properties is commonplace in biophysics. Despite this, a molecular-level empirical description of a membrane model as simple as a phospholipid bilayer with long linear hydrophobic chains incorporated is still missing. Here, we present an unprecedented molecular characterization of the incorporation of two long n-alkanes, n-eicosane (C20) and n-triacontane (C30) with 20 and 30 carbons, respectively, in phosphatidylcholine (PC) bilayers using a combination of experimental techniques (2H NMR, 31P NMR, 1H-13C dipolar recoupling solid-state NMR, X-ray scattering, and cryogenic electron microscopy) and atomistic molecular dynamics (MD) simulations. At low hydration, deuterated C20 and C30 yield 2H NMR spectra evidencing anisotropic-motion, which demonstrates their miscibility in PC membranes up to a critical alkane-to-acyl-chain volume fraction, ϕc. The acquired 2H NMR spectra of C20 and C30 have notably different lineshapes. At low alkane volume fractions below ϕc, CHARMM36 MD simulations predict such 2H NMR spectra qualitatively and thus enable an atomistic-level interpretation of the spectra. Above ϕc, the 2H NMR lineshapes become characteristic of motions in the intermediate-regime that, together with the MD simulation results, suggest the onset of immiscibility between the alkane molecules and the acyl chains. For all the systems investigated, the phospholipid molecular structure is unperturbed by the presence of the alkanes. However, at conditions of excess hydration and at surprisingly low alkane fractions below ϕc, a peak characteristic of isotropic motion is observed in both the 2H spectra of the alkanes and 31P spectra of the phospholipids, strongly indicating that the incorporation of the alkanes induces a reduction on the average radius of the lipid vesicles.
Collapse
Affiliation(s)
- Anika Wurl
- NMR Group - Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Maria Ott
- Department of Biotechnology and Biochemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Eric Plato
- NMR Group - Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Annette Meister
- Department of Biotechnology and Biochemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Farzad Hamdi
- Department of Biotechnology and Biochemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Panagiotis L Kastritis
- Department of Biotechnology and Biochemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Alfred Blume
- Insitute of Chemistry, Martin Luther University Halle-Wittenberg, 06099 Halle, Saale, Germany
| | - Tiago M Ferreira
- NMR Group - Institute of Physics, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
12
|
Kumari P, Faraone A, Kelley EG, Benedetto A. Stiffening Effect of the [Bmim][Cl] Ionic Liquid on the Bending Dynamics of DMPC Lipid Vesicles. J Phys Chem B 2021; 125:7241-7250. [PMID: 34169716 PMCID: PMC8279542 DOI: 10.1021/acs.jpcb.1c01347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The elastic properties of the cellular lipid membrane play a crucial role for life. Their alteration can lead to cell malfunction, and in turn, being able to control them holds the promise of effective therapeutic and diagnostic approaches. In this context, due to their proven strong interaction with lipid bilayers, ionic liquids (ILs)-a vast class of organic electrolytes-may play an important role. This work focuses on the effect of the model imidazolium-IL [bmim][Cl] on the bending modulus of DMPC lipid vesicles, a basic model of cellular lipid membranes. Here, by combining small-angle neutron scattering and neutron spin-echo spectroscopy, we show that the IL, dispersed at low concentrations at the bilayer-water interface, (i) diffuses into the lipid region, accounting for five IL-cations for every 11 lipids, and (ii) causes an increase of the lipid bilayer bending modulus, up to 60% compared to the neat lipid bilayer at 40 °C.
Collapse
Affiliation(s)
- Pallavi Kumari
- Department of Sciences, University of Roma Tre, 00146 Rome, Italy.,School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Antonio Faraone
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Antonio Benedetto
- Department of Sciences, University of Roma Tre, 00146 Rome, Italy.,School of Physics and Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland.,Laboratory for Neutron Scattering, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
13
|
Hishida M, Shimokawa N, Okubo Y, Taguchi S, Yamamura Y, Saito K. Phase Transition from the Interdigitated to Bilayer Membrane of a Cationic Surfactant Induced by Addition of Hydrophobic Molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14699-14709. [PMID: 33232164 DOI: 10.1021/acs.langmuir.0c02609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although the transition between a bilayer and an interdigitated membrane of a surfactant and lipid has been widely known for long, its mechanism remains unclear. This study reveals the transition mechanism of a cationic surfactant, dioctadecyldimethylammonium chloride (DODAC), through experiments and theoretical calculations. Experimentally, the transition from the interdigitated to bilayer structure in the gel phase of DODAC is found to be induced by adding hydrophobic molecules such as n-alkane and its derivatives. Further addition induces a different transition to another bilayer phase. Our theory, considering the competition of the electrostatic interaction between cationic headgroups and the hydrophobic interaction emerging at the alkyl-chain ends exposed to water, reproduces these two phase transitions. In addition, changes in alkyl-chain packing in the membranes at these transitions are reproduced. The underlying mechanism is that the interdigitated membrane is formed at a small additive content due to electrostatic repulsion. As the energetic disadvantage with respect to the hydrophobic interaction becomes dominant as the content increases, the transition to the bilayer occurs at a specific content. The bilayer-bilayer transition at a higher content is induced by the change in the balance of these interactions. Based on a similar concept, we suggest the mechanism of the additive-induced bilayer-interdigitated transition of phospholipids, i.e., neutrally charged (zwitterionic) surfactants.
Collapse
Affiliation(s)
- Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Yuki Okubo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Shun Taguchi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Yasuhisa Yamamura
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kazuya Saito
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
14
|
Nagao M, Bradbury R, Ansar SM, Kitchens CL. Effect of gold nanoparticle incorporation into oil-swollen surfactant lamellar membranes. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:065102. [PMID: 33344674 PMCID: PMC7744122 DOI: 10.1063/4.0000041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/25/2020] [Indexed: 05/08/2023]
Abstract
An oil-swollen surfactant membrane is employed to measure the effects of incorporated hydrophobically functionalized gold nanoparticles (AuNPs) on the structure and dynamics of the membranes. While maintaining an average AuNP diameter of approximately 5 nm, the membrane thickness was varied from 5 nm to 7.5 nm by changing the amount of oil in the membrane. The membranes become softer as the proportion of oil is increased, while the thickness fluctuations become slower. We attribute this to an increased fluctuation wavelength. Incorporation of AuNPs in the membrane induces membrane thinning and softening. Oil molecules surround the nanoparticles in the membrane and help their relatively homogeneous distribution. AuNPs significantly alter the membrane's structure and dynamics through thinning of the membrane, increased compressibility, and possible diffusion of AuNPs inside the membrane.
Collapse
Affiliation(s)
| | | | - Siyam M. Ansar
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, USA
| | - Christopher L. Kitchens
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|
15
|
Kelley EG, Butler PD, Ashkar R, Bradbury R, Nagao M. Scaling relationships for the elastic moduli and viscosity of mixed lipid membranes. Proc Natl Acad Sci U S A 2020; 117:23365-23373. [PMID: 32883879 PMCID: PMC7519290 DOI: 10.1073/pnas.2008789117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The elastic and viscous properties of biological membranes play a vital role in controlling cell functions that require local reorganization of the membrane components as well as dramatic shape changes such as endocytosis, vesicular trafficking, and cell division. These properties are widely acknowledged to depend on the unique composition of lipids within the membrane, yet the effects of lipid mixing on the membrane biophysical properties remain poorly understood. Here, we present a comprehensive characterization of the structural, elastic, and viscous properties of fluid membranes composed of binary mixtures of lipids with different tail lengths. We show that the mixed lipid membrane properties are not simply additive quantities of the single-component analogs. Instead, the mixed membranes are more dynamic than either of their constituents, quantified as a decrease in their bending modulus, area compressibility modulus, and viscosity. While the enhanced dynamics are seemingly unexpected, we show that the measured moduli and viscosity for both the mixed and single-component bilayers all scale with the area per lipid and collapse onto respective master curves. This scaling links the increase in dynamics to mixing-induced changes in the lipid packing and membrane structure. More importantly, the results show that the membrane properties can be manipulated through lipid composition the same way bimodal blends of surfactants, liquid crystals, and polymers are used to engineer the mechanical properties of soft materials, with broad implications for understanding how lipid diversity relates to biomembrane function.
Collapse
Affiliation(s)
- Elizabeth G Kelley
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899;
| | - Paul D Butler
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Department of Chemistry, The University of Tennessee, Knoxville, TN 37996
| | - Rana Ashkar
- Physics Department, Virginia Tech, Blacksburg, VA 20461
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 20461
| | - Robert Bradbury
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408
| | - Michihiro Nagao
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716
| |
Collapse
|
16
|
DiPasquale M, Gbadamosi O, Nguyen MHL, Castillo SR, Rickeard BW, Kelley EG, Nagao M, Marquardt D. A Mechanical Mechanism for Vitamin E Acetate in E-cigarette/Vaping-Associated Lung Injury. Chem Res Toxicol 2020; 33:2432-2440. [PMID: 32842741 DOI: 10.1021/acs.chemrestox.0c00212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The outbreak of electronic-cigarette/vaping-associated lung injury (EVALI) has made thousands ill. This lung injury has been attributed to a physical interaction between toxicants from the vaping solution and the pulmonary surfactant. In particular, studies have implicated vitamin E acetate as a potential instigator of EVALI. Pulmonary surfactant is vital to proper respiration through the mechanical processes of adsorption and interface stability to achieve and maintain low surface tension at the air-liquid interface. Using neutron spin echo spectroscopy, we investigate the impact of vitamin E acetate on the mechanical properties of two lipid-only pulmonary surfactant mimics: pure 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and a more comprehensive lipid mixture. It was found that increasing vitamin E acetate concentration nonlinearly increased membrane fluidity and area compressibility to a plateau. Softer membranes would promote adsorption to the air-liquid interface during inspiration as well as collapse from the interface during expiration. These findings indicate the potential for the failure of the pulmonary surfactant upon expiration, attributed to monolayer collapse. This collapse could contribute to the observed EVALI signs and symptoms, including shortness of breath and pneumonitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth G Kelley
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michihiro Nagao
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,Center for Exploration of Energy and Matter, Department of Physics, Indiana University, Bloomington, Indiana 47408, United States.,Department of Physics and AstronomyUniversity of DelawareNewarkDelaware19716United States
| | | |
Collapse
|