1
|
Substrate–Solvent Crosstalk—Effects on Reaction Kinetics and Product Selectivity in Olefin Oxidation Catalysis. CHEMISTRY 2021. [DOI: 10.3390/chemistry3030054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this work, we explored how solvents can affect olefin oxidation reactions catalyzed by MCM-bpy-Mo catalysts and whether their control can be made with those players. The results of this study demonstrated that polar and apolar aprotic solvents modulated the reactions in different ways. Experimental data showed that acetonitrile (aprotic polar) could largely hinder the reaction rate, whereas toluene (aprotic apolar) did not. In both cases, product selectivity at isoconversion was not affected. Further insights were obtained by means of neutron diffraction experiments, which confirmed the kinetic data and allowed for the proposal of a model based on substrate–solvent crosstalk by means of hydrogen bonding. In addition, the model was also validated in the ring-opening reaction (overoxidation) of styrene oxide to benzaldehyde, which progressed when toluene was the solvent (reaching 31% styrene oxide conversion) but was strongly hindered when acetonitrile was used instead (reaching only 7% conversion) due to the establishment of H-bonds in the latter. Although this model was confirmed and validated for olefin oxidation reactions, it can be envisaged that it may also be applied to other catalytic reaction systems where reaction control is critical, thereby widening its use.
Collapse
|
2
|
Lin L, Mei Q, Han X, Parker SF, Yang S. Investigations of Hydrocarbon Species on Solid Catalysts by Inelastic Neutron Scattering. Top Catal 2020. [DOI: 10.1007/s11244-020-01389-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractThe status of surface species on solid catalysts during heterogeneous catalysis is often mysterious. Investigations of these surface species are crucial to deconvolute the reaction network and design more efficient catalysts. Vibrational spectroscopy is a powerful technique to study the interactions between surface species and the catalysts and infrared (IR) and Raman spectroscopies have been widely applied to study reaction mechanisms in heterogeneous catalysis. However, IR/Raman spectra are difficult to model computationally and important vibrational modes may be IR-, Raman- (or both) inactive due to restrictions by optical selection rules. Inelastic neutron scattering (INS) is another form of vibrational spectroscopy and relies on the scattering of neutrons by the atomic nucleus. A consequence of this is that INS is not subject to any optical selection rules and all vibrations are measurable in principle. INS spectroscopy has been used to investigate surface species on catalysts in a wide range of heterogeneous catalytic reactions. In this mini-review, we focus on applications of INS in two important fields: petrochemical reactions and C1 chemistry. We introduce the basic principles of the INS technique, followed by a discussion of its application in investigating two key catalytic systems: (i) the behaviour of hydrocarbons on metal-oxide and zeolite catalysts and (ii) the formation of hydrocarbonaceous species on methane reforming and Fischer–Tropsch catalysts. The power of INS in studying these important catalytic systems is demonstrated.
Collapse
|
3
|
Abstract
Selective oxidation of benzyl alcohol to benzaldehyde was carried out with MoO2 nanoparticles (MoO2 NPs). MoO2 NPs were synthesized by two different approaches and characterized by several techniques. The synthesis was done by a hydrothermal procedure using ethylenediamine and either Fe2O3 or hydroquinone. In the latter case, an additional calcination step under N2 was performed to eliminate passivating agents at the surface of the nanoparticles. The synthesized nanocatalysts showed similar catalytic properties, being efficient catalysts in the oxidation of benzyl alcohol. High substrate conversion and product selectivity were achieved under all tested conditions. Studies were conducted using two different oxidants: tert-butyl hydroperoxide and hydrogen peroxide, in our continuous effort to obtain more efficient catalysts for more sustainable catalytic processes. When H2O2 was used as the oxidant, 94% yield was achieved with 100% selectivity for benzaldehyde, which was a very promising result to undergo other studies with this system. Moreover, to elucidate some aspects of the reaction mechanism, a study was conducted, and it was possible to conclude that the reaction undergoes, to some extent, through a radical mechanism with both oxidants.
Collapse
|