1
|
Guo Q, Zhi Y, Hu J, Tian SX. Ion Velocity Map Imaging Study of the Reactive Collisions between Carbon Dioxide and Helium Ion. J Phys Chem A 2024. [PMID: 38714336 DOI: 10.1021/acs.jpca.4c01092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
The reactive collision between He+ and CO2 plays an important role in substance evolutions of the planetary CO2-rich atmosphere. Using a three-dimensional ion velocity map imaging technique, we investigate the low-energy ion-molecule reactions He+ + CO2 → He + CO2+/He + CO+ + O/He + CO + O+. The velocity images of the products CO+ and O+ of dissociative charge-exchange reactions are distinctly different from those of charge-exchange product CO2+. The remarkable features of stereodynamics are observed in the dissociative charge-exchange reaction and are attributed to the spatial alignment of the initially random target CO2 during the He+ approach. Branching ratios of different channels of dissociative charge exchange are further obtained with the Doppler kinematics model, indicating a high preference for the energy-resonant channel.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yaya Zhi
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jie Hu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shan Xi Tian
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
2
|
Jarrold CC. Probing Anion-Molecule Complexes of Atmospheric Relevance Using Anion Photoelectron Detachment Spectroscopy. ACS PHYSICAL CHEMISTRY AU 2023; 3:17-29. [PMID: 36718261 PMCID: PMC9881448 DOI: 10.1021/acsphyschemau.2c00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/01/2023]
Abstract
Bimolecular reaction and collision complexes that drive atmospheric chemistry and contribute to the absorption of solar radiation are fleeting and therefore inherently challenging to study experimentally. Furthermore, primary anions in the troposphere are short lived because of a complicated web of reactions and complex formation they undergo, making details of their early fate elusive. In this perspective, the experimental approach of photodetaching mass-selected anion-molecule complexes or complex anions, which prepares neutrals in various vibronic states, is surveyed. Specifically, the application of anion photoelectron spectroscopy along with photoelectron-photofragment coincidence spectroscopy toward the study of collision complexes, complex anions in which a partial covalent bond is formed, and radical bimolecular reaction complexes, with relevance in tropospheric chemistry, will be highlighted.
Collapse
Affiliation(s)
- Caroline Chick Jarrold
- Department of Chemistry, Indiana
University, 800 East Kirkwood, Avenue
Bloomington, Indiana47405, United States
| |
Collapse
|
3
|
Hu J, Tian S. Progresses in the Study of Low-Energy Ion-molecule Reaction Dynamics ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Dobulis MA, McGee CJ, Sommerfeld T, Jarrold CC. Autodetachment over Broad Photon Energy Ranges in the Anion Photoelectron Spectra of [O 2- M] - ( M = Glyoxal, Methylglyoxal, or Biacetyl) Complex Anions. J Phys Chem A 2021; 125:9128-9142. [PMID: 34623818 DOI: 10.1021/acs.jpca.1c07163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Complexes of anion-neutral pairs are prevalent in chemical and physical processes in the interstellar medium, the atmosphere, and biological systems, among others. However, bimolecular anionic species that cannot be described as simple ion-molecule complexes due to their competitive electron affinities have received less attention. In this study, the [O2-M]- (M = glyoxal, methylglyoxal, or biacetyl) anion photoelectron spectra obtained with several different photon energies are reported and interpreted in the context of ab initio calculations. The spectra do not resemble the photoelectron spectra of M- or O2- "solvated" by a neutral partner. Rather, all spectra are dominated by near-threshold autodetachment from what are likely transient dipole bound states of the cis conformers of the complex anions. Very low Franck-Condon overlap between the neutral M·O2 van der Waals clusters and the partial covalently bound complex anions results in low-intensity, broad direct detachment observed in the spectra. The [O2-glyoxal]- spectra measured with 2.88 and 3.495 eV photon energies additionally exhibit features at ∼0.5 eV electron kinetic energy, which is more difficult to explain, though there are numerous quasibound states of the anion that may be involved. Overall, these features point to the inadequacy of describing the complex anions as simple ion-molecule complexes.
Collapse
Affiliation(s)
- Marissa A Dobulis
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Conor J McGee
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Thomas Sommerfeld
- Department of Chemistry and Physics, Southeast Louisiana University, SLU 10878, Hammond, Louisiana 70402, United States
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Hu J, Zhi Y, Xie JC, Wu CX, Tian SX. Collision-Energy Dependent Stereodynamics of Dissociative Charge Exchange Reaction between Ar + and CO. J Phys Chem Lett 2021; 12:7127-7133. [PMID: 34296886 DOI: 10.1021/acs.jpclett.1c01980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Long-distance charge-dipole attraction between atomic ion and randomly oriented polar molecule potentially makes the molecular orientation, which profoundly influences the products' kinetics of collisional reaction. Using the three-dimensional ion velocity map imaging technique, here we report a collision-energy dependent stereodynamics of dissociative charge exchange reaction Ar+ + CO → Ar + O + C+ in a range of 7.46-9.97 eV. At the lowest collision energy, the most C+ products are forward-scattered and are along the collision axis and are attributed to three different dissociation channels including the predominant one experiencing the rotating intermediate ArC+. At the high collision energies, the remarkably diffusive distribution of C+ arises from the prompt dissociation of the rebounded CO+. The different dynamic processes arising from the nearly collinear collision are elaborated explicitly on the basis of the data analyses using the Doppler kinetics models.
Collapse
Affiliation(s)
- Jie Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yaya Zhi
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Chen Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chun-Xiao Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shan Xi Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
6
|
Hu J, Xie JC, Wu CX, Tian SX. Superposition-state N 2 + produced in the intermolecular charge transfer from low-energy Ar + to N 2. J Chem Phys 2021; 154:234303. [PMID: 34241253 DOI: 10.1063/5.0055002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular electronic or vibrational states can be superimposed temporarily in an extremely short laser pulse, and the superposition-state transients formed therein receive much attention, owing to the extensive interest in molecular fundamentals and the potential applications in quantum information processing. Using the crossed-beam ion velocity map imaging technique, we disentangle two distinctly different pathways leading to the forward-scattered N2 + yields in the large impact-parameter charge transfer from low-energy Ar+ to N2. Besides the ground-state (X2Σg +) N2 + produced in the energy-resonant charge transfer, a few slower N2 + ions are proposed to be in the superpositions of the X2Σg +-A2Πu and A2Πu-B2Σu + states on the basis of the accidental degeneracy or energetic closeness of the vibrational states around the X2Σg +-A2Πu and A2Πu-B2Σu + crossings in the non-Franck-Condon region. This finding potentially shows a brand-new way to prepare the superposition-state molecular ion.
Collapse
Affiliation(s)
- Jie Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Chen Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chun-Xiao Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shan Xi Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Zhi Y, Hu J, Xie JC, Tian SX. Ion-Molecule Charge Exchange Reactions between Ar + and trans-/ cis-Dichloroethylene. J Phys Chem A 2021; 125:2573-2580. [PMID: 33755470 DOI: 10.1021/acs.jpca.1c00754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an ion velocity imaging study of the charge exchange reactions between Ar+ ion and trans-/cis-dichloroethylene in the collision energy range of 2.1-9.5 eV, and we find that the energy-resonant charge transfer plays a dominant role in the large impact-parameter reaction. The parent yields C2H2Cl2+ in the high-lying excited states are directly produced in the charge exchange reactions, while they prefer spontaneous fragmentations in photoionization. This significant difference indicates that the present charge exchange reactions are much slower than the photoelectron detachment. The structural relaxations of the target molecule are allowed in multiple dimensions of freedom during the charge transfer, which should be frequently observed for the charge exchange reactions with large molecules.
Collapse
Affiliation(s)
- Yaya Zhi
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jie Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Chen Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shan Xi Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Hu J, Wu CX, Zhi Y, Xie JC, He MM, Tian SX. Stereodynamics Observed in the Reactive Collisions of Low-Energy Ar + with Randomly Oriented O 2. J Phys Chem Lett 2021; 12:1346-1351. [PMID: 33504151 DOI: 10.1021/acs.jpclett.0c03601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stereodynamics of the collisional reaction between mutually aligned or oriented reactants has been a striking topic of chemical dynamics for decades. However, the stereodynamic aspects are scarcely revealed for the low-energy collision with a randomly oriented target. Here in the dissociative charge-exchange reaction between randomly oriented O2 and low-energy Ar+, we, using the three-dimensional ion velocity map imaging technique, clearly observe a linear alignment and a nearly isotropic distribution of the O+ yields along the collision axis. These observations are rationalized with the Doppler kinetic models in which the O2 bond is assumed to be parallel or unparallel to the collision axis of the large impact parameter collision. The linearly aligned O+, as the predominant yield, is produced in the parallel collision, while a rotating O2+, as the intermediate in the unparallel collision, leads to the isotropic distribution of O+.
Collapse
Affiliation(s)
- Jie Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Information (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chun-Xiao Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Information (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yaya Zhi
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Information (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Chen Xie
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Information (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Miao-Miao He
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Information (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shan Xi Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Information (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Zhang GD, Guan LC, Yan ZF, Cheng M, Gao H. A three-dimensional velocity-map imaging setup designed for crossed ion-molecule scattering studies. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2012219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Guo-dong Zhang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-chang Guan
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-feng Yan
- Beijing Success Technology Co. ltd, Beijing 100102, China
| | - Min Cheng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Gao
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Michaelsen T, Gstir T, Bastian B, Carrascosa E, Ayasli A, Meyer J, Wester R. Charge transfer dynamics in Ar + + CO. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1815885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- T. Michaelsen
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - T. Gstir
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - B. Bastian
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - E. Carrascosa
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
- Laboratory of Molecular Physical Chemistry, Swiss Federal Institute of Technology, Lausanne, Switzerland
| | - A. Ayasli
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - J. Meyer
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - R. Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
11
|
He MM, Hu J, Wu CX, Zhi Y, Tian SX. Collision-Energy Dependence of the Ion–Molecule Charge-Exchange Reaction Ar+ + CO → Ar + CO+. J Phys Chem A 2020; 124:3358-3363. [DOI: 10.1021/acs.jpca.0c02047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miao-Miao He
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Jie Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chun-Xiao Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yaya Zhi
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Shan Xi Tian
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|