1
|
Li SX, Yang YJ, Wang DY, Chen DL. MB 38(M=Be and Zn): A Quasi-Planar Structure Rather Than a Core-Shell Octahedral Borospherene Structure. Chemphyschem 2024; 25:e202400488. [PMID: 39005001 DOI: 10.1002/cphc.202400488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/03/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
In a recent paper (ChemPhysChem, 2023, 24, e202200947), based on the results computed using DFT method, the perfect core-shell octahedral configuration Be@B38 and Zn@B38 was reported to be the global minima of the MB38(M=Be and Zn) clusters. However, this paper presents the lower energy structures of MB38(M=Be and Zn) clusters as a quasi-planar configuration, the Be atom is found to reside on the convex surface of the quasi-planar B38 isomer, while the Zn atom tends to be attached to the top three B atoms of the quasi-planar B38 isomer. Our results show that quasi-planar MB38(M=Be and Zn) at DFT method have lower energy than core-shell octahedral configuration M@B38(M=Be and Zn). Natural atomic charges, valence electron density, electron localization function (ELF) analyses identify the MB38(M=Be and Zn) to be charge transfer complexes (Be2+B38 2-and Zn1+B38 1-) and suggest primarily the electrostatic interactions between doped atom and B38 fragment. The photoelectron spectra of the corresponding anionic structures were simulated, providing theoretical basis for future structural identification.
Collapse
Affiliation(s)
- Shi-Xiong Li
- School of Physics and Electronic Science, Guizhou Education University, Guiyang, 550018, China
| | - Yue-Ju Yang
- School of Physics and Electronic Science, Guizhou Education University, Guiyang, 550018, China
| | - Dan-Yu Wang
- School of Physics and Electronic Science, Guizhou Education University, Guiyang, 550018, China
| | - De-Liang Chen
- School of Physics and Electronic Science, Guizhou Education University, Guiyang, 550018, China
| |
Collapse
|
2
|
Wang D, Yang Y, Li S, Chen D. Structural Evolution of Small-Sized Phosphorus-Doped Boron Clusters: A Half-Sandwich-Structured PB 15 Cluster. Molecules 2024; 29:3384. [PMID: 39064962 PMCID: PMC11280394 DOI: 10.3390/molecules29143384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The present study is a theoretical investigation into the structural evolution, electronic properties, and photoelectron spectra of phosphorus-doped boron clusters PBn0/- (n = 3-17). The results of this study revealed that the lowest energy structures of PBn- (n = 3-17) clusters, except for PB17-, exhibit planar or quasi-planar structures. The lowest energy structures of PBn (n = 3-17), with the exceptions of PB7, PB9, and PB15, are planar or quasi-planar. The ground state of PB7 has an umbrella-shaped structure, with C6V symmetry. Interestingly, the neutral cluster PB15 has a half-sandwich-like structure, in which the P atom is attached to three B atoms at one end of the sandwich, exhibiting excellent relative and chemical stability due to its higher second-order energy difference and larger HOMO-LUMO energy gap of 4.31 eV. Subsequently, adaptive natural density partitioning (AdNDP) and electron localization function (ELF) analyses demonstrate the bonding characteristics of PB7 and PB15, providing support for the validity of their stability. The calculated photoelectron spectra show distinct characteristic peaks of PBn- (n = 3-17) clusters, thus providing theoretical evidence for the future identification of doped boron clusters. In summary, our work has significant implications for understanding the structural evolution of doped boron clusters PBn0/- (n = 3-17), motivating further experiments regarding doped boron clusters.
Collapse
Affiliation(s)
| | | | - Shixiong Li
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China; (D.W.); (Y.Y.); (D.C.)
| | | |
Collapse
|
3
|
Li SX, Yang YJ, Chen DL. PB 12+ and P 2B 12+/0/-: The Novel B 12 Cage Doped by Nonmetallic P Atoms. ACS OMEGA 2023; 8:44831-44838. [PMID: 38046297 PMCID: PMC10688167 DOI: 10.1021/acsomega.3c06002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023]
Abstract
A new kind of nonmetallic atom-doped boron cluster is described herein theoretically. When a phosphorus atom is added to the B12 motif and loses an electron, a novel B12 cage is obtained, composed of two B3 rings at both ends and one B6 ring in the middle, forming a triangular bifrustum. Interestingly, this B12 cage is formed by three B7 units joined together from three directions at an angle of 120°. When two P atoms are added to the B12 motif, this novel B12 cage is also obtained, and two P atoms are attached to the B3 rings at both ends of the triangular bifrustum, forming a triangular bipyramid (Johnson solid). Amazingly, the global minimums of neutral, monocationic, and monoanionic P2B12+/0/- have the same cage structure with a D3h symmetry; this is the smallest boron cage with the same structure. The P atom has five valence electrons, according to adaptive natural density partitioning bonding analyses of cage PB12+ and P2B12, in addition to one lone pair, the other three electrons of the P atom combine with an electron of each B atom on the B3 ring to form three 2c-2e σ bonds and form three electron sharing bonds with B atoms through covalent interactions, stabilizing the B12 cage. The calculated photoelectron spectra can be compared with future experimental values and provide a theoretical basis for the identification and confirmation of PnB12- (n = 1-2).
Collapse
Affiliation(s)
- Shi-Xiong Li
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - Yue-Ju Yang
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - De-Liang Chen
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
4
|
Zuo J, Zhang L, Chen B, He K, Dai W, Ding K, Lu C. Geometric and electronic structures of medium-sized boron clusters doped with plutonium. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:015302. [PMID: 37767896 DOI: 10.1088/1361-648x/acfc0c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023]
Abstract
Doping metal heteroatoms is an effective strategy to regulate the geometric and electronic structure of boron based nanoclusters. However, the exploration of the ground state structures of metal-boron-based nanoclusters is still a challenge duo to the complexity of the bonding interactions between heterogeneous atoms and boron cluster and the number of isomers on the potential energy surface increases exponentially with cluster size. Here, we use the CALYPSO cluster structural search method in combination with density functional theory calculations to study the geometries and electronic properties of anionic boron clusters doped with plutonium (PuBn-,n= 10-20). Our results show that the medium-sized PuB14-cluster exhibits excellent stability with highest occupied molecular orbital-lowest unoccupied molecular orbital energy gap of 2.30 eV. The remarkable stability of the anionic PuB14-cluster is due to the robust interactions between the Pu metal and the B14skeleton, along with the strong covalent interactions between the B atoms. These findings enrich the geometric structure database of metal doped clusters and provide valuable insights for the future synthesis of boron based nanomaterials.
Collapse
Affiliation(s)
- Jingning Zuo
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Lili Zhang
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Bole Chen
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Kaihua He
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Wei Dai
- School of Mathematics and Physics, Jingchu University of Technology, Hubei 448000, People's Republic of China
| | - Kewei Ding
- State Key Laboratory of Fluorine and Nitrogen Chemicals, Xi'an 710065, People's Republic of China
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, People's Republic of China
| | - Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| |
Collapse
|
5
|
Chen B, He K, Dai W, Gutsev GL, Lu C. Geometric and electronic diversity of metal doped boron clusters. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:183002. [PMID: 36827740 DOI: 10.1088/1361-648x/acbf18] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Being intermediate between small compounds and bulk materials, nanoparticles possess unique properties different from those of atoms, molecules, and bulk matter. In the past two decades, a combination of cluster structure prediction algorithms and experimental spectroscopy techniques was successfully used for exploration of the ground-state structures of pure and metal-doped boron clusters. The fruitfulness of this dual approach is well illustrated by the discovery of intriguing microstructures and unique physicochemical properties such as aromaticity and bond fluxionality for both boron and metal-doped boron clusters. Our review starts with an overview of geometrical configurations of pure boron clusters Bn, which are presented by planar, nanotube, bilayer, fullerene-like and core-shell structures, in a wide range ofnvalues. We consider next recent advances in studies of boron clusters doped with metal atoms paying close and thoughtful attention to modifications of geometric and electronic structures of pure boron clusters by heteroatoms. Finally, we discuss the possibility of constructing boron-based nanomaterials with specific functions from metal-boron clusters. Despite a variety of fruitful results obtained in numerous studies of boron clusters, the exploration of boron-based chemistry has not yet reached its peak. The intensive research continues in this area, and it should be expected that it brings exciting discoveries of intriguing new structures.
Collapse
Affiliation(s)
- Bole Chen
- School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, People's Republic of China
| | - Kaihua He
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Wei Dai
- School of Mathematics and Physics, Jingchu University of Technology, Hubei 448000, People's Republic of China
| | - Gennady L Gutsev
- Department of Physics, Florida A&M University, Tallahassee, FL 32307, United States of America
| | - Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| |
Collapse
|
6
|
Putro PA, Maddu A, Hardhienata H, Isnaeni I, Ahmad F, Dipojono HK. Revealing the incorporation of an NH 2 group into the edge of carbon dots for H 2O 2 sensing via the C-N⋯H hydrogen bond interaction. Phys Chem Chem Phys 2023; 25:2606-2617. [PMID: 36602293 DOI: 10.1039/d2cp04097b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated hydrogen peroxide (H2O2) sensing on NH2-functionalized carbon dots (Cdots) for three different -NH2 positions, and the N atom was found to be the active site using a quantum computational approach. B3LYP and 6-31G(d,p) were used for density functional theory (DFT) ground state calculations, whereas CAM-B3LYP and the same basis set were used in time-dependent density functional theory (TD-DFT) excited state calculations. Structural optimization showed that the H2O2 is chemisorbed on 1-sim via a C-N⋯H hydrogen bond interaction with an adsorption energy of -10.61 kcal mol-1. Mulliken atomic charge distributions and electrostatic potential (ESP) analysis were both used to determine reactivity of the molecules at the atomic level. For in-depth analysis of the ground states, we utilized Frontier molecular orbital (FMO) theory, quantum theory of atoms in molecules (QTAIM), and non-covalent interaction (NCI) index analysis. In addition, we also present UV-vis absorption spectra and charge transfer lengths to understand the mechanism of H2O2 sensing in excited states. Based on the molecular and electronic properties of the NH2-Cdots, it was shown that 1-sim is a potential candidate for use as an electrochemical sensor for H2O2 sensing. Whereas 3-sim is believed to be a potential candidate for use as an optical sensor of H2O2 based on the UV-vis characteristics via photoinduced charge transfer.
Collapse
Affiliation(s)
- Permono Adi Putro
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia. .,Department of Physics, Faculty of Science, Universitas Mandiri, Subang, 41211, Indonesia
| | - Akhiruddin Maddu
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia.
| | - Hendradi Hardhienata
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia.
| | - Isnaeni Isnaeni
- Research Center for Photonics, National Research and Innovation Agency, Banten, 15314, Indonesia
| | - Faozan Ahmad
- Department of Physics, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia.
| | - Hermawan Kresno Dipojono
- Department of Engineering Physics, Faculty of Industrial Technology, Bandung Institute of Technology, Bandung, 40132, Indonesia.,Research Center for Nanoscience and Nanotechnology, Bandung Institute of Technology, Bandung, 40132, Indonesia
| |
Collapse
|
7
|
Yang YJ, Li SX, Chen DL, Long ZW. Structural Evolution and Electronic Properties of Selenium-Doped Boron Clusters SeB n0/- (n = 3-16). Molecules 2023; 28:357. [PMID: 36615549 PMCID: PMC9824103 DOI: 10.3390/molecules28010357] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
A theoretical research of structural evolution, electronic properties, and photoelectron spectra of selenium-doped boron clusters SeBn0/- (n = 3-16) is performed using particle swarm optimization (CALYPSO) software in combination with density functional theory calculations. The lowest energy structures of SeBn0/- (n = 3-16) clusters tend to form quasi-planar or planar structures. Some selenium-doped boron clusters keep a skeleton of the corresponding pure boron clusters; however, the addition of a Se atom modified and improved some of the pure boron cluster structures. In particular, the Se atoms of SeB7-, SeB8-, SeB10-, and SeB12- are connected to the pure quasi-planar B7-, B8-, B10-, and B12- clusters, which leads to planar SeB7-, SeB8-, SeB10-, and SeB12-, respectively. Interestingly, the lowest energy structure of SeB9- is a three-dimensional mushroom-shaped structure, and the SeB9- cluster displays the largest HOMO-LUMO gap of 5.08 eV, which shows the superior chemical stability. Adaptive natural density partitioning (AdNDP) bonding analysis reveals that SeB8 is doubly aromatic, with 6 delocalized π electrons and 6 delocalized σ electrons, whereas SeB9- is doubly antiaromatic, with 4 delocalized π electrons and 12 delocalized σ electrons. Similarly, quasi-planar SeB12 is doubly aromatic, with 6 delocalized π electrons and 14 delocalized σ electrons. The electron localization function (ELF) analysis shows that SeBn0/- (n = 3-16) clusters have different local electron delocalization and whole electron delocalization effects. The simulated photoelectron spectra of SeBn- (n = 3-16) have different characteristic bands that can identify and confirm SeBn- (n = 3-16) combined with future experimental photoelectron spectra. Our research enriches the geometrical structures of small doped boron clusters and can offer insight for boron-based nanomaterials.
Collapse
Affiliation(s)
- Yue-Ju Yang
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - Shi-Xiong Li
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - De-Liang Chen
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| | - Zheng-Wen Long
- College of Physics, Guizhou University, Guiyang 550025, China
| |
Collapse
|
8
|
Rodríguez‐Kessler PL, Rodríguez‐Domínguez AR, MacLeod‐Carey D, Muñoz‐Castro A. Exploring the Size‐Dependent Hydrogen Storage Property on Ti‐Doped B
n
Clusters by Diatomic Deposition: Temperature Controlled H
2
Release. ADVANCED THEORY AND SIMULATIONS 2021. [DOI: 10.1002/adts.202100043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peter L. Rodríguez‐Kessler
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingeniería Universidad Autónoma de Chile El Llano Subercaseaux 2810 Santiago Chile
| | | | - Desmond MacLeod‐Carey
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingeniería Universidad Autónoma de Chile El Llano Subercaseaux 2810 Santiago Chile
| | - Alvaro Muñoz‐Castro
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingeniería Universidad Autónoma de Chile El Llano Subercaseaux 2810 Santiago Chile
| |
Collapse
|
9
|
|
10
|
Hamadi H, Shakerzadeh E, Esrafili MD. Fe-decorated all-boron B40 fullerene serving as a potential promising active catalyst for CO oxidation: A DFT mechanistic approach. Polyhedron 2020. [DOI: 10.1016/j.poly.2020.114699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Li SX, Zhang ZP, Long ZW, Chen DL. Structures, Electronic, and Spectral Properties of Doped Boron Clusters MB 12 0/- (M = Li, Na, and K). ACS OMEGA 2020; 5:20525-20534. [PMID: 32832805 PMCID: PMC7439372 DOI: 10.1021/acsomega.0c02693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Structures and electronic properties of alkali metal atom-doped boron clusters MB12 0/- (M = Li, Na, K) are determined using the CALYPSO method for the global minimum search followed by density functional theory. It is found that the global minima obtained for the neutral clusters correspond to the half-sandwich structure and those of the monoanionic clusters correspond to the boat-shaped structure. The neutral MB12 (M = Li, Na, K) can be considered as a member of the half-sandwich doped B12 clusters, and the geometrical pattern of anion MB12 - (M = Li, Na, K) is a new structure that is different from other doped B12 clusters. Natural population and chemical bonding analyses reveal that the alkali metal atom-doped boron clusters MB12 - are characterized as charge transfer complexes, M+B12 2-, resulting in symmetrically distributed chemical bonds and electrostatic interactions between cationic M+ and boron atoms. The calculated spectra indicate that MB12 0/- (M = Li, Na, K) has meaningful spectral features that can be compared with future experimental data. Our work enriches the varieties of geometrical structures of doped boron clusters and can provide much insight into boron nanomaterials.
Collapse
Affiliation(s)
- Shi-Xiong Li
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| | - Zheng-Ping Zhang
- College
of Big Data and Information Engineering, Guizhou University, Guiyang 550025, China
| | - Zheng-Wen Long
- College
of physics, Guizhou University, Guiyang 550025, China
| | - De-Liang Chen
- School
of Physics and Electronic Science, Guizhou
Education University, Guiyang 550018, China
| |
Collapse
|