1
|
Zeng J, Zhang Y, Zeng S, Li J, Fang Y, Qian L, Pubu L, Chen S. First-principles calculation on electronic properties of hydrogen evolution reaction of Ni-based electrode surfaces with different monatomic doping. J Mol Graph Model 2024; 130:108790. [PMID: 38749235 DOI: 10.1016/j.jmgm.2024.108790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
At present, the hydrogen evolution reaction (HER) of Ni-based electrode has an important influence on water electrolysis hydrogen production technology, involving complex electrochemical process of electrode. In this project, Materials Studio (MS) software was used to design and construct Ni-based electrode surface (NES) models with monatomic Mo, Co, Fe, Cr doping, and the NES models attached 1 H atom and 2H atoms were denoted as the NES-H models and NES-2H model, respectively. Then the first-principles calculation was carried out. The results showed that the doping of different atoms can effectively change the work function of the pure Ni. In the charge transfer process of the four NES-2H models, the distance between the two H atoms is most affected by Mo doping, and they leave the Ni electrode surface as a single H ion, respectively, while the effect on Co, Fe and Cr doping is relatively consistent, and they leave the Ni electrode surface with H2 molecules, respectively. The doping of four single atoms changes the distance of valence band (VB) top and conduction band (CB) bottom from Fermi level in NES, NES-H and NES-2H models, and affects the HER, in which Mo doping has the greatest effect. The TDOS of the above models is mainly derived from the PDOS of the d orbitals of the doped atoms and Ni atoms. The results will provide a theoretical basis for the research and development of Ni-based electrode materials in HER.
Collapse
Affiliation(s)
- Jianping Zeng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China; Department of Chemistry, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Shuyu Zeng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Jingwen Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Yuchen Fang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Ling Qian
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Luobu Pubu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Song Chen
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China.
| |
Collapse
|
3
|
Wan K, Huang L, Yan J, Ma B, Huang X, Luo Z, Zhang H, Xiao T. Removal of fluoride from industrial wastewater by using different adsorbents: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145535. [PMID: 33588221 DOI: 10.1016/j.scitotenv.2021.145535] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Many industries such as iron and steel metallurgy, copper and zinc smelting, the battery industry, and cement manufacturing industries discharge high concentrations of fluoride-containing wastewater into the environment. Subsequently, the discharge of high fluoride effluent serves as a threat to human life as well as the ecological ability to sustain life. This article analyses the advantages and drawbacks of some fluoride remediation technologies such as precipitation and flocculation, membrane technology, ion exchange technology, and adsorption technology. Among them, adsorption technology is considered the obvious choice and the best applicable technology. As such, several adsorbents with high fluoride adsorption capacity such as modified alumina, metal oxides, biomass, carbon-based materials, metal-organic frameworks, and other adsorption materials including their characteristics have been comprehensively summarized. Additionally, different adsorption conditions of the various adsorbents, such as pH, temperature, initial fluoride concentration, and contact time have been discussed in detail. The study found out that the composite synergy between different materials, morphological and structural control, and the strengthening of their functional groups can effectively improve the ability of the adsorbents for removing fluoride. This study has prospected the direction of various adsorbents for removing fluoride in wastewater, which would serve as guiding significance for future research in the field.
Collapse
Affiliation(s)
- Kuilin Wan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Lei Huang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Jia Yan
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Boyan Ma
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Xuanjie Huang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhixuan Luo
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Hongguo Zhang
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China; Guangzhou University-Linköping University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, PR China.
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of Pearl River Delta, Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| |
Collapse
|