1
|
Nacsa AB, Tokaji C, Czakó G. High-level analytical potential-energy-surface-based dynamics of the OH - + CH 3CH 2Cl S N2 and E2 reactions in full (24) dimensions. Faraday Discuss 2024; 251:604-621. [PMID: 38804112 DOI: 10.1039/d3fd00161j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
We develop a coupled-cluster full-dimensional global potential energy surface (PES) for the OH- + CH3CH2Cl reactive system, using the Robosurfer program package, which automatically samples configurations along PES-based trajectories as well as performs ab initio computations with Molpro and fitting with the monomial symmetrization approach. The analytical PES accurately describes both the bimolecular nucleophilic substitution (SN2) and elimination (E2) channels leading to the Cl- + CH3CH2OH and Cl- + H2O + C2H4 products, respectively, and allows efficient quasi-classical trajectory (QCT) simulations. QCT computations on the new PES provide accurate statistically-converged integral and differential cross sections for the OH- + CH3CH2Cl reaction, revealing the competing dynamics and mechanisms of the SN2 and E2 (anti, syn, β-α transfer) channels as well as various additional pathways leading to induced inversion of the CH3CH2Cl reactant, H-exchange between the reactants, H2O⋯Cl- complex formation, and H2O + CH3CHCl- products via proton abstraction.
Collapse
Affiliation(s)
- András B Nacsa
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Csenge Tokaji
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
2
|
Gál DR, Papp D, Czakó G. Benchmark ab initio characterization of the multi-channel Cl + CH 3X [X = F, Cl, Br, I] reactive potential energy surfaces. Phys Chem Chem Phys 2024; 26:17695-17706. [PMID: 38869051 DOI: 10.1039/d4cp01578a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
We determine benchmark geometries and relative energies for the stationary points of the Cl + CH3X [X = F, Cl, Br, I] reactions. We consider four possible reaction pathways: hydrogen abstraction, hydrogen substitution, halogen abstraction, and halogen substitution, where the substitution processes can proceed via either Walden inversion or front-side attack. We perform geometry optimizations and obtain harmonic vibrational frequencies at the explicitly-correlated UCCSD(T)-F12b/aug-cc-pVTZ level of theory, followed by UCCSD(T)-F12b/aug-cc-pVQZ single-point computations to make finite-basis-set error negligible. To reach chemical (<1 kcal mol-1), or even subchemical (<0.5 kcal mol-1) accuracy, we include core-correlation, scalar relativistic, post-(T), spin-orbit-splitting and zero-point-energy contributions, as well, in the relative energies of all the stationary points. Our benchmark 0 K reaction enthalpies are compared to available experimental results and show good agreement. The stationary-point structures and energetics are interpreted in terms of Hammond's postulate and used to make predictions related to the dynamical behavior of these reactive systems.
Collapse
Affiliation(s)
- Dorina R Gál
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
3
|
Tasi DA, Czakó G. Benchmark ab initio characterization of the complex potential energy surfaces of the HOO - + CH 3Y [Y = F, Cl, Br, I] reactions. Phys Chem Chem Phys 2024; 26:16048-16059. [PMID: 38779842 DOI: 10.1039/d4cp01071j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The α-effect is a well-known phenomenon in organic chemistry, and is related to the enhanced reactivity of nucleophiles involving one or more lone-pair electrons adjacent to the nucleophilic center. The gas-phase bimolecular nucleophilic substitution (SN2) reactions of α-nucleophile HOO- with methyl halides have been thoroughly investigated experimentally and theoretically; however, these investigations have mainly focused on identifying and characterizing the α-effect of HOO-. Here, we perform the first comprehensive high-level ab initio mapping for the HOO- + CH3Y [Y = F, Cl, Br and I] reactions utilizing the modern explicitly-correlated CCSD(T)-F12b method with the aug-cc-pVnZ [n = 2-4] basis sets. The present ab initio characterization considers five distinct product channels of SN2: (CH3OOH + Y-), proton abstraction (CH2Y- + H2O2), peroxide ion substitution (CH3OO- + HY), SN2-induced elimination (CH2O + HY + HO-) and SN2-induced rearrangement (CH2(OH)O- + HY). Moreover, besides the traditional back-side attack Walden inversion, the pathways of front-side attack, double inversion and halogen-bond complex formation have also been explored for SN2. With regard to the Walden inversion of HOO- + CH3Cl, the previously unaddressed discrepancies concerning the geometry of the corresponding transition state are clarified. For the HOO- + CH3F reaction, the recently identified SN2-induced elimination is found to be more exothermic than the SN2 channel, submerged by ∼36 kcal mol-1. The accuracy of our high-level ab initio calculations performed in the present study is validated by the fact that our new benchmark 0 K reaction enthalpies show excellent agreement with the experimental data in nearly all cases.
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
4
|
Horváth K, Tajti V, Papp D, Czakó G. Dynamics of the HCl + C 2H 5 Multichannel Reaction on a Full-Dimensional Ab Initio Potential Energy Surface. J Phys Chem A 2024; 128:4474-4482. [PMID: 38807530 PMCID: PMC11163425 DOI: 10.1021/acs.jpca.4c02042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
We report a full-dimensional ab initio analytical potential energy surface (PES), which accurately describes the HCl + C2H5 multichannel reaction. The new PES is developed by iteratively adding selected configurations along HCl + C2H5 quasi-classical trajectories (QCTs), thereby improving our previous Cl(2P3/2) + C2H6 PES using the Robosurfer program package. QCT simulations for the H'Cl + C2H5 reaction reveal hydrogen-abstraction, chlorine-abstraction, and hydrogen-exchange channels leading to Cl + C2H5H', H' + C2H5Cl, and HCl + C2H4H', respectively. Hydrogen abstraction dominates in the collision energy (Ecoll) range of 1-80 kcal/mol and proceeds with indirect isotropic scattering at low Ecoll and forward-scattered direct stripping at high Ecoll. Chlorine abstraction opens around 40 kcal/mol collision energy and becomes competitive with hydrogen abstraction at Ecoll = 80 kcal/mol. A restricted opening of the cone of acceptance in the Cl-abstraction reaction is found to result in the preference for a backward-scattering direct-rebound mechanism at all energies studied. Initial attack-angle distributions show mainly side-on collision preference of C2H5 for both abstraction reactions, and in the case of the HCl reactant, H/Cl-side preference for the H/Cl abstraction. For hydrogen abstraction, the collision energy transfer into the product translational and internal energy is almost equally significant, whereas in the case of chlorine abstraction, most of the available energy goes into the internal degrees of freedom. Hydrogen exchange is a minor channel with nearly constant reactivity in the Ecoll range of 10-80 kcal/mol.
Collapse
Affiliation(s)
- Kitti Horváth
- MTA-SZTE Lendület
Computational Reaction Dynamics Research Group, Interdisciplinary
Excellence Centre and Department of Physical Chemistry and Materials
Science, Institute of Chemistry, University
of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Viktor Tajti
- MTA-SZTE Lendület
Computational Reaction Dynamics Research Group, Interdisciplinary
Excellence Centre and Department of Physical Chemistry and Materials
Science, Institute of Chemistry, University
of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Dóra Papp
- MTA-SZTE Lendület
Computational Reaction Dynamics Research Group, Interdisciplinary
Excellence Centre and Department of Physical Chemistry and Materials
Science, Institute of Chemistry, University
of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület
Computational Reaction Dynamics Research Group, Interdisciplinary
Excellence Centre and Department of Physical Chemistry and Materials
Science, Institute of Chemistry, University
of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
5
|
Czakó G, Gruber B, Papp D, Tajti V, Tasi DA, Yin C. First-principles mode-specific reaction dynamics. Phys Chem Chem Phys 2024; 26:15818-15830. [PMID: 38639072 DOI: 10.1039/d4cp00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Controlling the outcome of chemical reactions by exciting specific vibrational and/or rotational modes of the reactants is one of the major goals of modern reaction dynamics studies. In the present Perspective, we focus on first-principles vibrational and rotational mode-specific dynamics computations on reactions of neutral and anionic systems beyond six atoms such as X + C2H6 [X = F, Cl, OH], HX + C2H5 [X = Br, I], OH- + CH3I, and F- + CH3CH2Cl. The dynamics simulations utilize high-level ab initio analytical potential energy surfaces and the quasi-classical trajectory method. Besides initial state specificity and the validity of the Polanyi rules, mode-specific vibrational-state assignment for polyatomic product species using normal-mode analysis and Gaussian binning is also discussed and compared with experiment.
Collapse
Affiliation(s)
- Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Balázs Gruber
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Viktor Tajti
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Cangtao Yin
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
6
|
Vysotskiy VP, Filippi C, Ryde U. Scalar Relativistic All-Electron and Pseudopotential Ab Initio Study of a Minimal Nitrogenase [Fe(SH) 4H] - Model Employing Coupled-Cluster and Auxiliary-Field Quantum Monte Carlo Many-Body Methods. J Phys Chem A 2024; 128:1358-1374. [PMID: 38324717 PMCID: PMC10895656 DOI: 10.1021/acs.jpca.3c05808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Nitrogenase is the only enzyme that can cleave the triple bond in N2, making nitrogen available to organisms. The detailed mechanism of this enzyme is currently not known, and computational studies are complicated by the fact that different density functional theory (DFT) methods give very different energetic results for calculations involving nitrogenase models. Recently, we designed a [Fe(SH)4H]- model with the fifth proton binding either to Fe or S to mimic different possible protonation states of the nitrogenase active site. We showed that the energy difference between these two isomers (ΔE) is hard to estimate with quantum-mechanical methods. Based on nonrelativistic single-reference coupled-cluster (CC) calculations, we estimated that the ΔE is 101 kJ/mol. In this study, we demonstrate that scalar relativistic effects play an important role and significantly affect ΔE. Our best revised single-reference CC estimates for ΔE are 85-91 kJ/mol, including energy corrections to account for contributions beyond triples, core-valence correlation, and basis-set incompleteness error. Among coupled-cluster approaches with approximate triples, the canonical CCSD(T) exhibits the largest error for this problem. Complementary to CC, we also used phaseless auxiliary-field quantum Monte Carlo calculations (ph-AFQMC). We show that with a Hartree-Fock (HF) trial wave function, ph-AFQMC reproduces the CC results within 5 ± 1 kJ/mol. With multi-Slater-determinant (MSD) trials, the results are 82-84 ± 2 kJ/mol, indicating that multireference effects may be rather modest. Among the DFT methods tested, τ-HCTH, r2SCAN with 10-13% HF exchange with and without dispersion, and O3LYP/O3LYP-D4, and B3LYP*/B3LYP*-D4 generally perform the best. The r2SCAN12 (with 12% HF exchange) functional mimics both the best reference MSD ph-AFQMC and CC ΔE results within 2 kJ/mol.
Collapse
Affiliation(s)
- Victor P. Vysotskiy
- Department
of Computational Chemistry, Lund University,
Chemical Centre, SE-221 00 Lund, Sweden
| | - Claudia Filippi
- MESA+
Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, Netherlands
| | - Ulf Ryde
- Department
of Computational Chemistry, Lund University,
Chemical Centre, SE-221 00 Lund, Sweden
| |
Collapse
|
7
|
Tasi DA, Czakó G. Vibrational mode-specificity in the dynamics of the OH- + CH3I multi-channel reaction. J Chem Phys 2024; 160:044305. [PMID: 38265083 DOI: 10.1063/5.0189561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 12/25/2023] [Indexed: 01/25/2024] Open
Abstract
We report a comprehensive characterization of the vibrational mode-specific dynamics of the OH- + CH3I reaction. Quasi-classical trajectory simulations are performed at four different collision energies on our previously-developed full-dimensional high-level ab initio potential energy surface in order to examine the impact of four different normal-mode excitations in the reactants. Considering the 11 possible pathways of OH- + CH3I, pronounced mode-specificity is observed in reactivity: In general, the excitations of the OH- stretching and CH stretching exert the greatest influence on the channels. For the SN2 and proton-abstraction products, the reactant initial attack angle and the product scattering angle distributions do not show major mode-specific features, except for SN2 at higher collision energies, where forward scattering is promoted by the CI stretching and CH stretching excitations. The post-reaction energy flow is also examined for SN2 and proton abstraction, and it is unveiled that the excess vibrational excitation energies rather transfer into the product vibrational energy because the translational and rotational energy distributions of the products do not represent significant mode-specificity. Moreover, in the course of proton abstraction, the surplus vibrational energy in the OH- reactant mostly remains in the H2O product owing to the prevailing dominance of the direct stripping mechanism.
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
8
|
Giricz A, Czakó G, Papp D. Alternating Stereospecificity upon Central-Atom Change: Dynamics of the F - +PH 2 Cl S N 2 Reaction Compared to its C- and N-Centered Analogues. Chemistry 2023; 29:e202302113. [PMID: 37698297 DOI: 10.1002/chem.202302113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 09/13/2023]
Abstract
Central-atom effects on bimolecular nucleophilic substitution (SN 2) reactions are well-known in chemistry, however, the atomic-level SN 2 dynamics at phosphorous (P) centers has never been studied. We investigate the dynamics of the F- +PH2 Cl reaction with the quasi-classical trajectory method on a novel full-dimensional analytical potential energy surface fitted on high-level ab initio data. Our computations reveal intermediate dynamics compared to the F- +CH3 Cl and the F- +NH2 Cl SN 2 reactions: phosphorus as central atom leads to a more indirect SN 2 reaction with extensive complex-formation with respect to the carbon-centered one, however, the title reaction is more direct than its N-centered pair. Stereospecificity, characteristic at C-center, does not appear here either, due to the submerged front-side-attack retention path and the repeated entrance-channel inversional motion, whereas the multi-inversion mechanism discovered at nitrogen center is also undermined by the deep Walden-well. At low collision energies, 6 % of the PH2 F products form with retained configuration, mostly through complex-mediated mechanisms, while this ratio reaches 24 % at the highest energy due to the increasing dominance of the direct front-side mechanism and the smaller chance for hitting the deep Walden-inversion minimum. Our results suggest pronounced central-atom effects in SN 2 reactions, which can fundamentally change their (stereo)dynamics.
Collapse
Affiliation(s)
- Anett Giricz
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| | - Dóra Papp
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary
| |
Collapse
|
9
|
Dékány AÁ, Czakó G. Exploring the versatile reactivity of the F- + SiH3Cl system on a full-dimensional coupled-cluster potential energy surface. J Chem Phys 2023; 158:2895234. [PMID: 37290077 DOI: 10.1063/5.0153083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
We develop a full-dimensional analytical potential energy surface (PES) for the F- + SiH3Cl reaction using Robosurfer for automatically sampling the configuration space, the robust [CCSD-F12b + BCCD(T) - BCCD]/aug-cc-pVTZ composite level of theory for computing the energy points, and the permutationally invariant polynomial method for fitting. Evolution of the fitting error and the percentage of the unphysical trajectories are monitored as a function of the iteration steps/number of energy points and polynomial order. Quasi-classical trajectory simulations on the new PES reveal rich dynamics resulting in high-probability SN2 (SiH3F + Cl-) and proton-transfer (SiH2Cl- + HF) products as well as several lower-probability channels, such as SiH2F- + HCl, SiH2FCl + H-, SiH2 + FHCl-, SiHFCl- + H2, SiHF + H2 + Cl-, and SiH2 + HF + Cl-. The Walden-inversion and front-side-attack-retention SN2 pathways are found to be competitive, producing nearly racemic products at high collision energies. The detailed atomic-level mechanisms of the various reaction pathways and channels as well as the accuracy of the analytical PES are analyzed along representative trajectories.
Collapse
Affiliation(s)
- Attila Á Dékány
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
10
|
Tasi DA, Michaelsen T, Wester R, Czakó G. Quasi-classical trajectory study of the OH - + CH 3I reaction: theory meets experiment. Phys Chem Chem Phys 2023; 25:4005-4014. [PMID: 36649119 DOI: 10.1039/d2cp05553h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Regarding OH- + CH3I, several studies have focused on the dynamics of the reaction. Here, high-level quasi-classical trajectory simulations are carried out at four different collision energies on our recently developed potential energy surface. In all, more than half a million trajectories are performed, and for the first time, the detailed quasi-classical trajectory results are compared with the reanalysed crossed-beam ion imaging experiments. Concerning the previously reported direct dynamics study of OH- + CH3I, a better agreement can be obtained between the revised experiment and our novel theoretical results. Furthermore, in the present work, the benchmark geometries, frequencies and relative energies of the stationary points are also determined for the OH- + CH3I proton-abstraction channel along with the earlier characterized SN2 channel.
Collapse
Affiliation(s)
- Domonkos A Tasi
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | - Tim Michaelsen
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25/3, 6020 Innsbruck, Austria
| | - Gábor Czakó
- Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| |
Collapse
|
11
|
Zhao S, Fu G, Zhen W, Yang L, Sun J, Zhang J. Reaction mechanism conversion induced by the contest of nucleophile and leaving group. Phys Chem Chem Phys 2022; 24:24146-24154. [PMID: 36168813 DOI: 10.1039/d2cp01987f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct dynamic simulations have been employed to investigate the OH- + CH3Cl reaction with the chosen B3LYP/aug-cc-pVDZ method. The calculated rate coefficient for the bimolecular nucleophilic substitution reaction (SN2), 1.0 × 10-9 cm3 mol-1 s-1 at 300 K, agrees well with the experimental result of (1.3-1.6) × 10-9 cm3 mol-1 s-1. The simulations reveal that the majority of the SN2 reactions are temporarily trapped in the hydrogen-bonded complex at Ecoll = 0.89 kcal mol-1. Importantly, the influences of the leaving group and nucleophile have been discussed by comparisons of X- + CH3Y (X = F, OH; Y = Cl, I) reactions. For the X = F- reactions, the reaction probability of SN2 increases along the increased leaving group ability Cl < I, suggesting that the thermodynamic factor plays a key role. The indirect mechanisms were found to be dominant for both reactions. In contrast, for X = OH-, the fraction of SN2 drops with the enhanced leaving group ability. In particular, a dramatic transition occurs for the dominant atomic reaction mechanisms, i.e., from complex-mediated indirect to direct, implying an interesting contest between the leaving group and the nucleophile and the importance of the dynamic factors, i.e., the dipole moment, steric hindrance, and electronegativity.
Collapse
Affiliation(s)
- Siwei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Gang Fu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Wenqing Zhen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
| | - Li Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China. .,State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jianmin Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China. .,State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Jiaxu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China. .,State Key Lab of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, P. R. China
| |
Collapse
|
12
|
Gruber B, Tajti V, Czako G. Full-dimensional automated potential energy surface development and dynamics for the OH + C 2H 6 reaction. J Chem Phys 2022; 157:074307. [DOI: 10.1063/5.0104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We develop a full-dimensional analytical potential energy surface (PES) for the OH + C2H6 reaction using the Robosurfer program system, which automatically (1) selects geometries from quasi-classical trajectories, (2) performs ab initio computations using a CCSD(T)-F12/triple-zeta-quality composite method, (3) fits the energies utilizing the permutationally-invariant monomial symmetrization approach, and iteratively improves the PES via steps (1)−(3). Quasi-classical trajectory simulations on the new PES reveal that hydrogen abstraction leading to H2O + C2H5 dominates in the collision energy range of 10−50 kcal/mol. The abstraction cross sections increase and the dominant mechanism shifts from rebound (small impact parameters and backward scattering) to stripping (larger impact parameters and forward scattering) with increasing collision energy as opacity functions and scattering angle distributions indicate. The abstraction reaction clearly favors side-on OH attack over O-side and the least-preferred H-side approach, whereas C2H6 behaves like a spherical object with only slight C−C-perpendicular side-on preference. Collision energy efficiently flows into the relative translation of the products, whereas product internal energy distributions show only little collision energy dependence. H2O/C2H5 vibrational distributions slightly/significantly violate zero-point energy and are nearly independent of collision energy, whereas the rotational distributions clearly blue-shift as collision energy increases.
Collapse
Affiliation(s)
- Balázs Gruber
- University of Szeged Faculty of Science and Informatics, Hungary
| | - Viktor Tajti
- Chemistry, University of Szeged Faculty of Science and Informatics, Hungary
| | - Gabor Czako
- Chemistry, University of Szeged Faculty of Science and Informatics, Hungary
| |
Collapse
|
13
|
Tasi DA, Czakó G. Unconventional S N2 retention pathways induced by complex formation: High-level dynamics investigation of the NH 2 - + CH 3I polyatomic reaction. J Chem Phys 2022; 156:184306. [PMID: 35568546 DOI: 10.1063/5.0091789] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Investigations on the dynamics of chemical reactions have been a hot topic for experimental and theoretical studies over the last few decades. Here, we carry out the first high-level dynamical characterization for the polyatom-polyatom reaction between NH2 - and CH3I. A global analytical potential energy surface is developed to describe the possible pathways with the quasi-classical trajectory method at several collision energies. In addition to SN2 and proton abstraction, a significant iodine abstraction is identified, leading to the CH3 + [NH2⋯I]- products. For SN2, our computations reveal an indirect character as well, promoting the formation of [CH3⋯NH2] complexes. Two novel dominant SN2 retention pathways are uncovered induced by the rotation of the CH3 fragment in these latter [CH3⋯NH2] complexes. Moreover, these uncommon routes turn out to be the most dominant retention paths for the NH2 - + CH3I SN2 reaction.
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
14
|
Győri T, Czako G. ManyHF: A pragmatic automated method of finding lower-energy Hartree−Fock solutions for potential energy surface development. J Chem Phys 2022; 156:071101. [DOI: 10.1063/5.0080817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Tibor Győri
- Chemistry, University of Szeged Faculty of Science and Informatics, Hungary
| | - Gabor Czako
- Chemistry, University of Szeged Faculty of Science and Informatics, Hungary
| |
Collapse
|
15
|
Tasi DA, Czakó G. Uncovering an oxide ion substitution for the OH - + CH 3F reaction. Chem Sci 2021; 12:14369-14375. [PMID: 34880987 PMCID: PMC8580036 DOI: 10.1039/d1sc03834f] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Theoretical investigations on chemical reactions allow us to understand the dynamics of the possible pathways and identify new unexpected routes. Here, we develop a global analytical potential energy surface (PES) for the OH− + CH3F reaction in order to perform high-level dynamics simulations. Besides bimolecular nucleophilic substitution (SN2) and proton abstraction, our quasi-classical trajectory computations reveal a novel oxide ion substitution leading to the HF + CH3O− products. This exothermic reaction pathway occurs via the CH3OH⋯F− deep potential well of the SN2 product channel as a result of a proton abstraction from the hydroxyl group by the fluoride ion. The present detailed dynamics study of the OH− + CH3F reaction focusing on the surprising oxide ion substitution demonstrates how incomplete our knowledge is of fundamental chemical reactions. Reaction dynamics simulations on a high-level ab initio analytical potential energy surface reveal a novel oxide ion substitution channel for the OH− + CH3F reaction.![]()
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre, Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged Rerrich Béla tér 1 Szeged H-6720 Hungary
| |
Collapse
|
16
|
Tajti V, Győri T, Czakó G. Detailed quasiclassical dynamics of the F - + CH 3Br reaction on an ab initio analytical potential energy surface. J Chem Phys 2021; 155:124301. [PMID: 34598562 DOI: 10.1063/5.0065209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Dynamics and mechanisms of the F- + CH3Br(v = 0) → Br- + CH3F (SN2 via Walden inversion, front-side attack, and double inversion), F- + inverted-CH3Br (induced inversion), HF + CH2Br- (proton abstraction), and FH⋯Br- + 1CH2 reactions are investigated using a high-level global ab initio potential energy surface, the quasiclassical trajectory method, as well as non-standard configuration- and mode-specific analysis techniques. A vector-projection method is used to identify inversion and retention trajectories; then, a transition-state-attack-angle-based approach unambiguously separates the front-side attack and the double-inversion retention pathways. The Walden-inversion SN2 channel becomes direct rebound dominated with increasing collision energy as indicated by backward scattering, initial back-side attack preference, and the redshifting of product internal energy peaks in accord with CF stretching populations. In the minor retention and induced-inversion pathways, almost the entire available energy transfers into product rotation-vibration, and retention mainly proceeds with indirect, slow double inversion following induced inversion with about 50% probability. Proton abstraction is dominated by direct stripping (evidenced by forward scattering) with CH3-side initial attack preference, providing mainly vibrationally ground state products with significant zero-point energy violation.
Collapse
Affiliation(s)
- Viktor Tajti
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Tibor Győri
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Gábor Czakó
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
17
|
Tasi DA, Tokaji C, Czakó G. A benchmark ab initio study of the complex potential energy surfaces of the OH - + CH 3CH 2Y [Y = F, Cl, Br, I] reactions. Phys Chem Chem Phys 2021; 23:13526-13534. [PMID: 34132273 DOI: 10.1039/d1cp01303c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We provide the first benchmark characterization of the OH- + CH3CH2Y [Y = F, Cl, Br, I] reactions utilizing the high-level explicitly-correlated CCSD(T)-F12b method with the aug-cc-pVnZ [n = 2(D), 3(T), 4(Q)] basis sets. We explore and analyze the stationary points of the elimination (E2) and substitution (SN2) reactions, including anti-E2, syn-E2, back-side attack, front-side attack, and double inversion. In all cases, SN2 is thermodynamically more preferred than E2. In the entrance channel of SN2 a significant front-side complex formation is revealed, and in the product channel the global minimum of the title reactions is obtained at the hydrogen-bonded CH3CH2OHY- complex. Similar to the OH- + CH3Y reactions, double inversion can proceed via a notably lower-energy pathway than front-side attack, moreover, for Y = I double inversion becomes barrier-less. For the transition state of the anti-E2, a prominent ZPE effect emerges, giving an opportunity for a kinetically more favored pathway than back-side attack. In addition to SN2 and E2, other possible product channels are considered, and in most cases, the benchmark reaction enthalpies are in excellent agreement with the experimental data.
Collapse
Affiliation(s)
- Domonkos A Tasi
- MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.
| | | | | |
Collapse
|
18
|
Czakó G, Győri T, Papp D, Tajti V, Tasi DA. First-Principles Reaction Dynamics beyond Six-Atom Systems. J Phys Chem A 2021; 125:2385-2393. [PMID: 33631071 PMCID: PMC8028310 DOI: 10.1021/acs.jpca.0c11531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Moving beyond the six-atomic benchmark systems, we discuss the new age and future of first-principles reaction dynamics, which investigates complex, multichannel chemical reactions. We describe the methodology starting from the benchmark ab initio characterization of the stationary points, followed by full-dimensional potential energy surface (PES) developments and reaction dynamics computations. We highlight our composite ab initio approach providing benchmark stationary-point properties with subchemical accuracy, the Robosurfer program system enabling automatic PES development, and applications for the Cl + C2H6, F + C2H6, and OH- + CH3I post-six-atom reactions focusing on ab initio issues and their solutions as well as showing the excellent agreement between theory and experiment.
Collapse
Affiliation(s)
- Gábor Czakó
- MTA-SZTE Lendület
Computational Reaction Dynamics Research Group, Interdisciplinary
Excellence Centre and Department of Physical Chemistry and Materials
Science, Institute of Chemistry, University
of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Tibor Győri
- MTA-SZTE Lendület
Computational Reaction Dynamics Research Group, Interdisciplinary
Excellence Centre and Department of Physical Chemistry and Materials
Science, Institute of Chemistry, University
of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Dóra Papp
- MTA-SZTE Lendület
Computational Reaction Dynamics Research Group, Interdisciplinary
Excellence Centre and Department of Physical Chemistry and Materials
Science, Institute of Chemistry, University
of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Viktor Tajti
- MTA-SZTE Lendület
Computational Reaction Dynamics Research Group, Interdisciplinary
Excellence Centre and Department of Physical Chemistry and Materials
Science, Institute of Chemistry, University
of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Domonkos A. Tasi
- MTA-SZTE Lendület
Computational Reaction Dynamics Research Group, Interdisciplinary
Excellence Centre and Department of Physical Chemistry and Materials
Science, Institute of Chemistry, University
of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
19
|
Li J, Zhao B, Xie D, Guo H. Advances and New Challenges to Bimolecular Reaction Dynamics Theory. J Phys Chem Lett 2020; 11:8844-8860. [PMID: 32970441 DOI: 10.1021/acs.jpclett.0c02501] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dynamics of bimolecular reactions in the gas phase are of foundational importance in combustion, atmospheric chemistry, interstellar chemistry, and plasma chemistry. These collision-induced chemical transformations are a sensitive probe of the underlying potential energy surface(s). Despite tremendous progress in past decades, our understanding is still not complete. In this Perspective, we survey the recent advances in theoretical characterization of bimolecular reaction dynamics, stimulated by new experimental observations, and identify key new challenges.
Collapse
Affiliation(s)
- Jun Li
- School of Chemistry and Chemical Engineering & Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 401331, China
| | - Bin Zhao
- Theoretische Chemie, Fakultät für Chemie, Universität Bielefeld, Universitätsstraße 25, D-33615 Bielefeld, Germany
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
20
|
Chen R, Shao K, Fu B, Zhang DH. Fitting potential energy surfaces with fundamental invariant neural network. II. Generating fundamental invariants for molecular systems with up to ten atoms. J Chem Phys 2020; 152:204307. [PMID: 32486688 DOI: 10.1063/5.0010104] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Symmetry adaptation is crucial in representing a permutationally invariant potential energy surface (PES). Due to the rapid increase in computational time with respect to the molecular size, as well as the reliance on the algebra software, the previous neural network (NN) fitting with inputs of fundamental invariants (FIs) has practical limits. Here, we report an improved and efficient generation scheme of FIs based on the computational invariant theory and parallel program, which can be readily used as the input vector of NNs in fitting high-dimensional PESs with permutation symmetry. The newly developed method significantly reduces the evaluation time of FIs, thereby extending the FI-NN method for constructing highly accurate PESs to larger systems beyond five atoms. Because of the minimum size of invariants used in the inputs of the NN, the NN structure can be very flexible for FI-NN, which leads to small fitting errors. The resulting FI-NN PES is much faster on evaluating than the corresponding permutationally invariant polynomial-NN PES.
Collapse
Affiliation(s)
- Rongjun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Kejie Shao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| |
Collapse
|