1
|
Ramos Montero GE, Ballarini AD, Yañez MJ, de Miguel SR, Bocanegra SA, Zgolicz PD. Unprecedented selectivity behavior in the direct dehydrogenation of n-butane to n-butenes with similar active Pt nanoparticle size: unveiling structural and electronic characteristics of supported monometallic catalysts. Phys Chem Chem Phys 2024; 26:26984-27006. [PMID: 39422659 DOI: 10.1039/d4cp00922c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this work, supported Pt monometallic catalysts were prepared using oxide and carbon supports by conventional impregnation methods. Similar Pt metallic nanoparticle sizes (mean sizes about 1.8-2 nm) have been obtained using different Pt precursor loadings (0.3 to 5 wt%). For comparison, catalysts with larger nanoparticle sizes were prepared using the liquid phase reduction method. Characterization results indicate different electronic and structural characteristics for the Pt nanoparticles, comparing nanoparticles with similar and different sizes, implying that both the Pt loading and the preparation method affect the formation of different metallic phases. We used the direct dehydrogenation of n-butane to n-butenes reaction as a test reaction to study the catalytic behavior of the Pt nanoparticles obtained at different Pt atomic concentrations. Surprisingly, Pt catalysts with the lowest metallic loading show the highest selectivities to olefins. Besides, Pt catalysts supported on carbon materials showed higher selectivity to butenes than those supported on oxide materials, this was attributed to a higher electron density in the Pt active sites. Likewise, at low Pt loadings, the CNP-supported Pt nanoparticles could be confined at the defect in the nanotube structure as crystalline agglomerates of atoms with few layers or monolayers with very few surface adatom or stepped adatom nanostructures or simply as a group of atoms, thus creating active Pt sites that favor the dehydrogenation reaction over secondary reactions.
Collapse
Affiliation(s)
- Gustavo Enrique Ramos Montero
- Instituto de Investigaciones en Catálisis y Petroquímica "Ingeniero José M. Parera" (INCAPE), Facultad de Ingeniería Química, Universidad Nacional del Litoral - CONICET, Centro Científico Tecnológico CONICET Santa Fe (CCT-SF), Santa Fe, Argentina.
- Physicochemistry Department, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Paraná, Entre Ríos, Argentina
| | - Adriana Daniela Ballarini
- Instituto de Investigaciones en Catálisis y Petroquímica "Ingeniero José M. Parera" (INCAPE), Facultad de Ingeniería Química, Universidad Nacional del Litoral - CONICET, Centro Científico Tecnológico CONICET Santa Fe (CCT-SF), Santa Fe, Argentina.
| | - María Julia Yañez
- Centro Científico Tecnológico CONICET Bahía Blanca (CCT-BB), Camino La Carrindanga, Km 7, (8000) Bahía Blanca, Argentina
| | - Sergio Rubén de Miguel
- Instituto de Investigaciones en Catálisis y Petroquímica "Ingeniero José M. Parera" (INCAPE), Facultad de Ingeniería Química, Universidad Nacional del Litoral - CONICET, Centro Científico Tecnológico CONICET Santa Fe (CCT-SF), Santa Fe, Argentina.
| | - Sonia Alejandra Bocanegra
- Instituto de Investigaciones en Catálisis y Petroquímica "Ingeniero José M. Parera" (INCAPE), Facultad de Ingeniería Química, Universidad Nacional del Litoral - CONICET, Centro Científico Tecnológico CONICET Santa Fe (CCT-SF), Santa Fe, Argentina.
| | - Patricia Daniela Zgolicz
- Instituto de Investigaciones en Catálisis y Petroquímica "Ingeniero José M. Parera" (INCAPE), Facultad de Ingeniería Química, Universidad Nacional del Litoral - CONICET, Centro Científico Tecnológico CONICET Santa Fe (CCT-SF), Santa Fe, Argentina.
- Physicochemistry Department, Facultad de Ingeniería, Universidad Nacional de Entre Ríos, Paraná, Entre Ríos, Argentina
| |
Collapse
|
2
|
Zhang X, Yan B, Peng L, Zhao J, Zheng J. Controllable synthesis of Pt nanoparticles on graphene oxide nanosheets and its application for electrochemical determination of dopamine. ChemistrySelect 2023. [DOI: 10.1002/slct.202204022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Xinjin Zhang
- Shaanxi Province Engineering Laboratory of High Performance Concrete Shaanxi Railway Institute Weinan China
| | - Bo Yan
- Shaanxi Province Engineering Laboratory of High Performance Concrete Shaanxi Railway Institute Weinan China
| | - Lei Peng
- Shaanxi Province Engineering Laboratory of High Performance Concrete Shaanxi Railway Institute Weinan China
| | - Jie Zhao
- Shaanxi Province Engineering Laboratory of High Performance Concrete Shaanxi Railway Institute Weinan China
| | - Jianbin Zheng
- Shaanxi Provincial Key Laboratory of Electroanalytical Chemistry Northwest University Xi'an Shaanxi 710069 China
| |
Collapse
|
3
|
Insight into the role of iron in platinum-based bimetallic catalysts for selective hydrogenation of cinnamaldehyde. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Tamura T, Ohyama J, Sawabe K, Satsuma A. Enhanced CO oxidation by reversible structural variation of supported Ag nanoparticle catalyst from single to twin by CO treatment. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
6
|
Kundra M, Grall T, Ng D, Xie Z, Hornung CH. Continuous Flow Hydrogenation of Flavorings and Fragrances Using 3D-Printed Catalytic Static Mixers. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05671] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Milan Kundra
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Tom Grall
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Derrick Ng
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South, Victoria 3169, Australia
| | | |
Collapse
|
7
|
Wei X, Zhou Y, Sun X, Jiang F, Zhang J, Wu Z, Wang F, Li G. Hydrogenation of pentenal over supported Pt nanoparticles: influence of Lewis-acid sites in the conversion pathway. NEW J CHEM 2021. [DOI: 10.1039/d1nj03979b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The superb TOF and high selectivity of Pt/CeAl are associated with the surface properties (e.g. medium Lewis acidic site). The unsaturated Ce4+/Al3+ cations pairs act as the acid sites and electron acceptors to polarize the CO bonds.
Collapse
Affiliation(s)
- Xuejiao Wei
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yajuan Zhou
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xiaonan Sun
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Fuhua Jiang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jintao Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Zeying Wu
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Fei Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou 213164, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
8
|
Selective hydrogenation of cinnamaldehyde with Ni Fe1-Al2O4+ composite oxides supported Pt catalysts: C O versus C C selectivity switch by varying the Ni/Fe molar ratios. J Catal 2021. [DOI: 10.1016/j.jcat.2020.11.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Murata K, Ogura K, Ohyama J, Sawabe K, Yamamoto Y, Arai S, Satsuma A. Selective Hydrogenation of Cinnamaldehyde over the Stepped and Plane Surface of Pd Nanoparticles with Controlled Morphologies by CO Chemisorption. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26002-26012. [PMID: 32429665 DOI: 10.1021/acsami.0c05938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Carbon monoxide (CO) molecules are attracting attention as capping agents that control the structure of metal nanoparticles. In this study, we aimed to control the shape and surface structure of Pd particles by reducing the supported Pd precursor with CO. The reduction of Pd nanoparticles with CO promoted the exposure of step sites and generated spherical and concave-tetrahedral Pd particles on carbon and SiO2 supports. On the other hand, conventional H2-reduced Pd particles show a flattened shape. The preferential exposure of the step sites by the adsorbed CO molecules was supported by the density functional theory-calculated surface energy and the Wulff construction. Morphology- and surface-controlled Pd nanoparticles were used to study the surface structure and morphology effects of Pd nanoparticles on cinnamaldehyde (CAL) hydrogenation. With an increase in the fraction of step sites on Pd nanoparticles, the hydrogenation activity and selectivity of hydrocinnamaldehyde (HCAL) increased. On step sites, the adsorption of the C═C bond of CAL proceeded preferentially, and HCAL was efficiently and selectively generated.
Collapse
Affiliation(s)
- Kazumasa Murata
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Keiji Ogura
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Kyoichi Sawabe
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuta Yamamoto
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Shigeo Arai
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Atsushi Satsuma
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
10
|
|
11
|
Efficient liquid-phase hydrogenation of cinnamaldehyde to cinnamyl alcohol with a robust PtFe/HPZSM-5 catalyst. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Lan X, Wang T. Highly Selective Catalysts for the Hydrogenation of Unsaturated Aldehydes: A Review. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04331] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaocheng Lan
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tiefeng Wang
- Beijing Key Laboratory of Green Reaction Engineering and Technology Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Ohyama J, Kato S, Machida M, Satsuma A. Shape Control Preparation of Supported Platinum Nano-octahedra by Ethylene Treatment for Enhancement of Selective Hydrogenation of Cinnamaldehyde. CHEM LETT 2019. [DOI: 10.1246/cl.190462] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Junya Ohyama
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8245, Japan
| | - Sosuke Kato
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| | - Masato Machida
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8245, Japan
| | - Atsushi Satsuma
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8245, Japan
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
14
|
Wang Q, Wang G, Xin H, Liu J, Xiong G, Wu P, Li X. Sn-doped Pt catalyst supported on hierarchical porous ZSM-5 for the liquid-phase hydrogenation of cinnamaldehyde. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00755e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
3Pt0.05Sn/HPZSM-5 serves as a much more active and recyclable catalyst for the liquid-phase selective hydrogenation of cinnamaldehyde to cinnamyl alcohol.
Collapse
Affiliation(s)
- Qixiang Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- China
| | - Guimei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- China
| | - Huiyue Xin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- China
| | - Jiaxu Liu
- School of Chemical Engineering
- State Key laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| | - Guang Xiong
- School of Chemical Engineering
- State Key laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian
- China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- China
| | - Xiaohong Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- School of Chemistry and Molecular Engineering
- East China Normal University
- China
| |
Collapse
|