1
|
Das S, Maity J, Panda TK. Metal/Non-Metal Catalyzed Activation of Organic Nitriles. CHEM REC 2022; 22:e202200192. [PMID: 36126180 DOI: 10.1002/tcr.202200192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 12/15/2022]
Abstract
Nitrile activation is a prominent topic in recent developments in chemistry, especially in organic, inorganic, biological chemistry, as well as in the natural synthesis of products and in the pharmaceutical industry. The activation of nitriles using both metal and non-metal precursors has attracted several researchers, who are exploring newer ways to synthesize novel compounds. Nitrile activation can be achieved by combining various catalytic double hydroelementation reactions, such as hydrosilylation, hydroboration, and hydrogenation of organonitriles using silanes, pinacolborane, and other sources of hydrogen. These methodologies have garnered considerable attention since they are effective in the reduction of organonitriles, whose end products are extensively applied in synthetic organic chemistry. In this review, we summarize the development of selective hydroborylation, hydrosilylation, dihydroborysilylation, and hydrogenation of organonitriles, as well as their reaction mechanisms and the role of metal complexes in the catalytic cycles. This review article explains various synthetic methodologies applied toward the reduction of organonitriles into corresponding amines.
Collapse
Affiliation(s)
- Suman Das
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 285, Sangareddy, Telangana, India
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen's College, University of Delhi, Delhi, 110 007, India
| | - Tarun K Panda
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi - 502 285, Sangareddy, Telangana, India
| |
Collapse
|
2
|
Yamada T, Park K, Furugen C, Jiang J, Shimizu E, Ito N, Sajiki H. Highly Selective Hydrogenative Conversion of Nitriles into Tertiary, Secondary, and Primary Amines under Flow Reaction Conditions. CHEMSUSCHEM 2022; 15:e202102138. [PMID: 34779573 DOI: 10.1002/cssc.202102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Flow reaction methods have been developed to selectively synthesize tertiary, secondary, and primary amines depending on heterogeneous platinum-group metal species under catalytic hydrogenation conditions using nitriles as starting materials. A 10 % Pd/C-packed catalyst cartridge affords symmetrically substituted tertiary amines in good to excellent yields. A 10 % Rh/C-packed catalyst cartridge enables the divergent synthesis of secondary and primary amines, with either cyclohexane or acetic acid as a solvent, respectively. Reaction parameters, such as the metal catalyst, solvent, and reaction temperature, and continuous-flow conditions, such as flow direction and second support of the catalyst in a catalyst cartridge, are quite important for controlling the reaction between the hydrogenation of nitriles and nucleophilic attack of in situ-generated amines to imine intermediates. A wide variety of aliphatic and aromatic nitriles could be highly selectively transformed into the corresponding tertiary, secondary, and primary amines by simply changing the metal species of the catalyst or flow parameters. Furthermore, the selective continuous-flow methodologies are applied over at least 72 h to afford three different types of amines in 80-99 % yield without decrease in catalytic activities.
Collapse
Affiliation(s)
- Tsuyoshi Yamada
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 5011196, Japan
| | - Kwihwan Park
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 5011196, Japan
| | - Chikara Furugen
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 5011196, Japan
| | - Jing Jiang
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 5011196, Japan
| | - Eisho Shimizu
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 5011196, Japan
| | - Naoya Ito
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 5011196, Japan
| | - Hironao Sajiki
- Laboratory of Organic Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 5011196, Japan
| |
Collapse
|
3
|
Decker D, Wei Z, Rabeah J, Drexler HJ, Brückner A, Jiao H, Beweries T. Catalytic and mechanistic studies of a highly active and E-selective Co(II) PNNH pincer catalyst system for transfer-semihydrogenation of internal alkynes. Inorg Chem Front 2022. [DOI: 10.1039/d1qi00998b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the application of a Co(II) PNNH pincer catalyst system (PNNH = 2-(5-(t-butyl)-1H-pyrazol-3-yl)-6-(dialkylphosphinomethyl)pyridine) for the highly E-selective transfer semihydrogenation of internal diaryl alkynes using methanol and ammonia borane...
Collapse
|
4
|
Sharma DM, Gouda C, Gonnade RG, Punji B. Room temperature Z-selective hydrogenation of alkynes by hemilabile and non-innocent (NNN)Co(ii) catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00027j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Room temperature chemo- and stereoselective hydrogenation of alkynes is described using a well-defined and phosphine-free hemilabile cobalt catalyst.
Collapse
Affiliation(s)
- Dipesh M. Sharma
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
| | - Chandrakant Gouda
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
- Centre for Material Characterization, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune – 411 008, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune – 411 008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad – 201 002, India
| |
Collapse
|
5
|
Lu Q, Liu J, Ma L. Recent advances in selective catalytic hydrogenation of nitriles to primary amines. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Binary CuO/TiO2 nanocomposites as high-performance catalysts for tandem hydrogenation of nitroaromatics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Zhang S, Duan YN, Qian Y, Tang W, Zhang R, Wen J, Zhang X. Cobalt-Catalyzed Hydrogenative Transformation of Nitriles. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shaoke Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Ya-Nan Duan
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Yu Qian
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Wenyue Tang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Runtong Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jialin Wen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Xumu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
8
|
Chemoselective transfer hydrogenation of nitriles to secondary amines with nickel(II) catalysts. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Li X, Zhou Q. Manganese‐Catalyzed Selective Hydrogenative Cross‐Coupling of Nitriles and Amines to Form Secondary Imines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiao‐Gen Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| | - Qi‐Lin Zhou
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry Nankai University Tianjin 300071 People's Republic of China
| |
Collapse
|
10
|
Timelthaler D, Schöfberger W, Topf C. Selective and Additive-Free Hydrogenation of Nitroarenes Mediated by a DMSO-Tagged Molecular Cobalt Corrole Catalyst. European J Org Chem 2021; 2021:2114-2120. [PMID: 34248412 PMCID: PMC8252576 DOI: 10.1002/ejoc.202100073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/16/2021] [Indexed: 12/02/2022]
Abstract
We report on the first cobalt corrole that effectively mediates the homogeneous hydrogenation of structurally diverse nitroarenes to afford the corresponding amines. The given catalyst is easily assembled prior to use from 4-tert-butylbenzaldehyde and pyrrole followed by metalation of the resulting corrole macrocycle with cobalt(II) acetate. The thus-prepared complex is self-contained in that the hydrogenation protocol is free from the requirement for adding any auxiliary reagent to elicit the catalytic activity of the applied metal complex. Moreover, a containment system is not required for the assembly of the hydrogenation reaction set-up as both the autoclave and the reaction vessels are readily charged under a regular laboratory atmosphere.
Collapse
Affiliation(s)
- Daniel Timelthaler
- Institute of Catalysis (INCA)Johannes Kepler University (JKU)4040LinzAustria
| | | | - Christoph Topf
- Institute of Catalysis (INCA)Johannes Kepler University (JKU)4040LinzAustria
| |
Collapse
|
11
|
Huo RP, Zhang X, Zhang CF, Qin HH, Wang RX. A theoretical investigation of iron-catalyzed selective hydrogenation of nitriles to secondary imines. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Leischner T, Spannenberg A, Junge K, Beller M. Synthesis of Molybdenum Pincer Complexes and Their Application in the Catalytic Hydrogenation of Nitriles. ChemCatChem 2020. [DOI: 10.1002/cctc.202000736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Thomas Leischner
- Leibniz Institute for Catalysis Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz Institute for Catalysis Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz Institute for Catalysis Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz Institute for Catalysis Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
13
|
Garduño JA, García JJ. Toward Amines, Imines, and Imidazoles: A Viewpoint on the 3d Transition-Metal-Catalyzed Homogeneous Hydrogenation of Nitriles. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02283] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jorge A. Garduño
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Juventino J. García
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
14
|
Lévay K, Tóth KD, Kárpáti T, Hegedűs L. Heterogeneous Catalytic Hydrogenation of 3-Phenylpropionitrile over Palladium on Carbon. ACS OMEGA 2020; 5:5487-5497. [PMID: 32201841 PMCID: PMC7081635 DOI: 10.1021/acsomega.0c00125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
A previously developed and industrially feasible process for selective, Pd-mediated, liquid-phase heterogeneous catalytic hydrogenation of nitriles to primary amines was extended to the reduction of 3-phenylpropionitrile (PPN) to 3-phenylpropylamine (PPA). PPN, which belongs to the homologous series of benzonitrile (BN) and benzyl cyanide (BC), was hydrogenated under mild reaction conditions (30-80 °C, 6 bar), over Pd/C, in two immiscible solvents (dichloromethane/water) and using acidic additives (NaH2PO4 and H2SO4). Although relatively high conversion (76%) was achieved, the selectivity to PPA (26%) and its isolated yield (20%) were lesser than those in the case of the hydrogenation of BN or BC reported earlier. However, the purity of PPA was >99% without using any purification method. Quantum chemical calculations using a density functional theory (DFT) method were performed to compare the adsorption interactions of the different imine intermediates on palladium, as well as to clarify the differences observed in the primary amine selectivity. PPA is a valuable intermediate for the synthesis of carboxypeptidase B enzyme inhibitors, antimuscarinic drugs, or potential anticancer agents in the pharmaceutical industry.
Collapse
|
15
|
Sharma DM, Punji B. 3 d Transition Metal‐Catalyzed Hydrogenation of Nitriles and Alkynes. Chem Asian J 2020; 15:690-708. [DOI: 10.1002/asia.201901762] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/27/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Dipesh M. Sharma
- Chemical Engineering DivisionCSIR-National Chemical Laboratory (CSIR-NCL) Academy of Scientific and Innovative Research (AcSIR) Dr. Homi Bhabha Road Pune 411 008 India
| | - Benudhar Punji
- Chemical Engineering DivisionCSIR-National Chemical Laboratory (CSIR-NCL) Academy of Scientific and Innovative Research (AcSIR) Dr. Homi Bhabha Road Pune 411 008 India
| |
Collapse
|
16
|
Wang J, Tang Q, Jin S, Wang Y, Yuan Z, Chi Q, Zhang Z. Mild and selective hydrogenation of nitriles into primary amines over a supported Ni catalyst. NEW J CHEM 2020. [DOI: 10.1039/c9nj05307g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mesoporous Al2O3 supported Ni catalyst demonstrated a high activity and selectivity for the hydrogenation of nitriles into primary amines under the mild conditions (60–80 °C and 2.5 bar H2) with ammonia as the additive.
Collapse
Affiliation(s)
- Jianjian Wang
- Key Laboratory of Catalysis and Materials Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Qingjie Tang
- Key Laboratory of Catalysis and Materials Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Materials Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Yanxin Wang
- Key Laboratory of Catalysis and Materials Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Ziliang Yuan
- Key Laboratory of Catalysis and Materials Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Quan Chi
- Key Laboratory of Catalysis and Materials Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences
- South-Central University for Nationalities
- Wuhan
- P. R. China
| |
Collapse
|
17
|
Catalytic Conversion of Nitriles by Metal Pincer Complexes. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Hydrogenation Reactions Catalyzed by PNP-Type Complexes Featuring a HN(CH2CH2PR2)2 Ligand. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Elsby MR, Baker RT. Strategies and mechanisms of metal–ligand cooperativity in first-row transition metal complex catalysts. Chem Soc Rev 2020; 49:8933-8987. [DOI: 10.1039/d0cs00509f] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of metal–ligand cooperation (MLC) by transition metal bifunctional catalysts has emerged at the forefront of homogeneous catalysis science.
Collapse
Affiliation(s)
- Matthew R. Elsby
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| | - R. Tom Baker
- Department of Chemistry and Biomolecular Sciences and Centre for Catalysis Research and Innovation
- University of Ottawa
- Ottawa
- Canada
| |
Collapse
|
20
|
Rodríguez AA, Garduño JA, García JJ. Nickel( ii) and nickel(0) complexes as precursors of nickel nanoparticles for the catalytic hydrogenation of benzonitrile. NEW J CHEM 2020. [DOI: 10.1039/c9nj05221f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The use of nickel(ii) and nickel(0) complexes as precursors of nickel nanoparticles with catalytic activity in the hydrogenation of benzonitrile is reported.
Collapse
Affiliation(s)
| | - Jorge A. Garduño
- Facultad de Química
- Universidad Nacional Autónoma de México
- Mexico City
- Mexico
| | | |
Collapse
|
21
|
Garbe M, Budweg S, Papa V, Wei Z, Hornke H, Bachmann S, Scalone M, Spannenberg A, Jiao H, Junge K, Beller M. Chemoselective semihydrogenation of alkynes catalyzed by manganese(i)-PNP pincer complexes. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00992j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A first homogeneous manganese catalyzed chemoselective semihydrogenation of alkynes to Z-olefins in the presence of molecular hydrogen is described.
Collapse
Affiliation(s)
| | | | | | - Zhihong Wei
- Leibniz-Institut für Katalyse e.V
- Rostock
- Germany
| | | | - Stephan Bachmann
- F. Hoffmann-La Roche AG
- Department of Process Chemistry & Catalysis
- Basel
- Switzerland
| | - Michelangelo Scalone
- F. Hoffmann-La Roche AG
- Department of Process Chemistry & Catalysis
- Basel
- Switzerland
| | | | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V
- Rostock
- Germany
| | | | | |
Collapse
|
22
|
Lévay K, Hegedűs L. Recent Achievements in the Hydrogenation of Nitriles Catalyzed by Transitional Metals. CURR ORG CHEM 2019. [DOI: 10.2174/1385272823666191007160341] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Amines are important and valuable intermediates in the pharmaceutical, plastic
and agrochemical industry. Hence, there is an increasing interest in developing improved
process for the synthesis of amines. The heterogeneous catalytic hydrogenation of nitriles
is one of the most frequently applied methods for the synthesis of diverse amines, but the
homogeneous catalysis has also received a growing attention from the catalysis
community. This mini-review provides an overview of the recent achievements in the selective
reduction of nitriles using both homogeneous and heterogeneous transition metal
catalysts.
Collapse
Affiliation(s)
- Krisztina Lévay
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| | - László Hegedűs
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1111 Budapest, Hungary
| |
Collapse
|
23
|
Ding Y, Luo S, Weng C, An J. Reductive Deuteration of Nitriles Using D2O as a Deuterium Source. J Org Chem 2019; 84:15098-15105. [PMID: 31610121 DOI: 10.1021/acs.joc.9b02056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuxuan Ding
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Shihui Luo
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Chaoqun Weng
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jie An
- College of Science, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| |
Collapse
|
24
|
Timelthaler D, Topf C. Liquid-Phase Hydrogenation of Nitriles to Amines Facilitated by a Co(II)/Zn(0) Pair: A Ligand-Free Catalytic Protocol. J Org Chem 2019; 84:11604-11611. [PMID: 31454242 DOI: 10.1021/acs.joc.9b01544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The given report introduces a simple and user-friendly in situ method for the production of catalytically active cobalt particles. The approach circumvents the use of air- and moisture-sensitive reductants as well as the application of anhydrous Co-precursor salts. Accordingly, the described catalytic system is readily assembled under open-flask conditions by simply combining the components in the reaction vessel. Therefore, the arduous charging procedure of the reaction autoclave in a glovebox under an inert gas atmosphere is no longer necessary. In fact, the catalytically active material is obtained upon treatment of readily available Co(OAc)2·4 H2O with benign commercial Zn powder. The catalytic performance of the resultant material was tested in the heterogeneous hydrogenation of nitriles to the corresponding primary amines. Both activity and selectivity of the cobalt catalyst are significantly enhanced if a triflate-based Lewis acid and ammonia is added to the reaction mixture.
Collapse
Affiliation(s)
- Daniel Timelthaler
- Institute of Catalysis (INCA) , Johannes Kepler University (JKU) , 4040 Linz , Austria
| | - Christoph Topf
- Institute of Catalysis (INCA) , Johannes Kepler University (JKU) , 4040 Linz , Austria
| |
Collapse
|
25
|
Sharma DM, Punji B. Selective Synthesis of Secondary Amines from Nitriles by a User‐Friendly Cobalt Catalyst. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900586] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dipesh M. Sharma
- Organometallic Synthesis and Catalysis Group, Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-NCL Pune 411 008 India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Group, Chemical Engineering Division CSIR-National Chemical Laboratory (CSIR-NCL) Dr. Homi Bhabha Road Pune 411 008 India
- Academy of Scientific and Innovative Research (AcSIR) CSIR-NCL Pune 411 008 India
| |
Collapse
|
26
|
Spiegelberg B, Dell'Acqua A, Xia T, Spannenberg A, Tin S, Hinze S, de Vries JG. Additive-Free Isomerization of Allylic Alcohols to Ketones with a Cobalt PNP Pincer Catalyst. Chemistry 2019; 25:7820-7825. [PMID: 30973658 DOI: 10.1002/chem.201901148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 11/06/2022]
Abstract
Catalytic isomerization of allylic alcohols in ethanol as a green solvent was achieved by using air and moisture stable cobalt (II) complexes in the absence of any additives. Under mild conditions, the cobalt PNP pincer complex substituted with phenyl groups on the phosphorus atoms appeared to be the most active. High rates were obtained at 120 °C, even though the addition of one equivalent of base increases the speed of the reaction drastically. Although some evidence was obtained supporting a dehydrogenation-hydrogenation mechanism, it was proven that this is not the major mechanism. Instead, the cobalt hydride complex formed by dehydrogenation of ethanol is capable of double-bond isomerization through alkene insertion-elimination.
Collapse
Affiliation(s)
- Brian Spiegelberg
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Andrea Dell'Acqua
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Tian Xia
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Sergey Tin
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Sandra Hinze
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| | - Johannes G de Vries
- Leibniz-Institut für Katalyse e.V. an der, Universität Rostock, Albert-Einstein-Strasse 29a, 18059, Rostock, Germany
| |
Collapse
|