1
|
Zhong S, Guo X, Zhou A, Chen Z, Jin D, Fan M, Ma T. Fundamentals and Recent Progress in Magnetic Field Assisted CO 2 Capture and Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305533. [PMID: 37786306 DOI: 10.1002/smll.202305533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/24/2023] [Indexed: 10/04/2023]
Abstract
CO2 capture and conversion technology are highly promising technologies that definitely play a part in the journey towards carbon neutrality. Releasing CO2 by mild stimulation and the development of high efficiency catalytic processes are urgently needed. The magnetic field, as a thermodynamic parameter independent of temperature and pressure, is vital in the enhancement of CO2 capture and conversion process. In this review, the recent progress of magnetic field-enhanced CO2 capture and conversion is comprehensively summarized. The theoretical fundamentals of magnetic field on CO2 adsorption, release and catalytic reduction process are discussed, including the magnetothermal, magnetohydrodynamic, spin selection, Lorentz forces, magnetoresistance and spin relaxation effects. Additionally, a thorough review of the current progress of the enhancement strategies of magnetic field coupled with a variety of fields (including thermal, electricity, and light) is summarized in the aspect of CO2 related process. Finally, the challenges and prospects associated with the utilization of magnetic field-assisted techniques in the construction of CO2 capture and conversion systems are proposed. This review offers a reference value for the future design of catalysts, mechanistic investigations, and practical implementation for magnetic field enhanced CO2 capture and conversion.
Collapse
Affiliation(s)
- Siyi Zhong
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Xiaolin Guo
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
- Institute of Catalysis, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Ang Zhou
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Zi'ang Chen
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Dingfeng Jin
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Meiqiang Fan
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
| | - Tingli Ma
- College of Materials and Chemistry, China Jiliang University, Hangzhou, 310018, P. R. China
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology 2-4 Hibikino, Wakamatsu, Kitakyushu, 808-0135, Japan
| |
Collapse
|
2
|
Ghosh S, Gupta S, Gregoire M, Ourlin T, Fazzini PF, Abi-Aad E, Poupin C, Chaudret B. Catalytic Sabatier Process under Thermally and Magnetically Induced Heating: A Comparative Case Study for Titania-Supported Nickel Catalyst. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091474. [PMID: 37177019 PMCID: PMC10180227 DOI: 10.3390/nano13091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
In the present paper, we compare the activity, selectivity, and stability of a supported nickel catalyst in classical heating conditions and in magnetically activated catalysis by using iron wool as a heating agent. The catalyst, 5 wt% Ni supported on titania (Degussa P25), was prepared via an organometallic decomposition method and was thoroughly characterized by using elemental, microscopic, and diffraction techniques. In the event of magnetic induction heating, the % CO2 conversion reached a maximum of ~85% compared to ~78% for thermal conditions at a slightly lower temperature (~335 °C) than the thermal heating (380 °C). More importantly, both processes were found to be stable for 45 h on stream. Moreover, the effects of magnetic induction and classical heating over the catalyst evolution were discussed. This study demonstrated the potential of magnetic heating-mediated methanation, which is currently under investigation for the development of pilot-scale reactors.
Collapse
Affiliation(s)
- Sourav Ghosh
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 31077 Toulouse, France
| | - Sharad Gupta
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Manon Gregoire
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Thibault Ourlin
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 31077 Toulouse, France
| | - Pier-Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 31077 Toulouse, France
| | - Edmond Abi-Aad
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Christophe Poupin
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), UR 4492, Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, 59140 Dunkerque, France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 31077 Toulouse, France
| |
Collapse
|
3
|
Raya-Barón Á, Mazarío J, Mencia G, Fazzini PF, Chaudret B. l-Lysine Stabilized FeNi Nanoparticles for the Catalytic Reduction of Biomass-Derived Substrates in Water Using Magnetic Induction. CHEMSUSCHEM 2023:e202300009. [PMID: 36877569 DOI: 10.1002/cssc.202300009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The reduction of biomass-derived compounds gives access to valuable chemicals from renewable sources, circumventing the use of fossil feedstocks. Herein, we describe the use of iron-nickel magnetic nanoparticles for the reduction of biomass model compounds in aqueous media under magnetic induction. Nanoparticles with a hydrophobic ligand (FeNi3 -PA, PA=palmitic acid) have been employed successfully, and their catalytic performance is intended to improve by ligand exchange with lysine (FeNi3 -Lys and FeNi3 @Ni-Lys NPs) to enhance water dispersibility. All three catalysts have been used to hydrogenate 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan with complete selectivity and almost quantitative yields, using 3 bar of H2 and a magnetic field of 65 mT in water. These catalysts have been recycled up to 10 times maintaining high conversions. Under the same conditions, levulinic acid has been hydrogenated to γ-valerolactone, and 4'-hydroxyacetophenone hydrodeoxygenated to 4-ethylphenol, with conversions up to 70 % using FeNi3 -Lys, and selectivities above 85 % in both cases. This promising catalytic system improves biomass reduction sustainability by avoiding noble metals and expensive ligands, increasing energy efficiency via magnetic induction heating, using low H2 pressure, and proving good reusability while working in an aqueous medium.
Collapse
Affiliation(s)
- Álvaro Raya-Barón
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077, Toulouse cedex 4, France
| | - Jaime Mazarío
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077, Toulouse cedex 4, France
| | - Gabriel Mencia
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077, Toulouse cedex 4, France
| | - Pier-Francesco Fazzini
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077, Toulouse cedex 4, France
| | - Bruno Chaudret
- Université de Toulouse, UMR 5215 INSA, CNRS, UPS, Laboratoire de Physique et Chimie des Nano-Objets, 135 avenue de Rangueil, F-31077, Toulouse cedex 4, France
| |
Collapse
|
4
|
Estrader M, Soulantica K, Chaudret B. Organometallic Synthesis of Magnetic Metal Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202207301. [DOI: 10.1002/anie.202207301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Marta Estrader
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS Université de Toulouse 31077 Toulouse France
| | - Katerina Soulantica
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS Université de Toulouse 31077 Toulouse France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets, UMR 5215 INSA, CNRS, UPS Université de Toulouse 31077 Toulouse France
| |
Collapse
|
5
|
Cerezo-Navarrete C, Marin IM, García-Miquel H, Corma A, Chaudret B, Martínez-Prieto LM. Magnetically Induced Catalytic Reduction of Biomass-Derived Oxygenated Compounds in Water. ACS Catal 2022. [PMID: 37528952 PMCID: PMC10388291 DOI: 10.1021/acscatal.2c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of energetically efficient processes for the aqueous reduction of biomass-derived compounds into chemicals is key for the optimal transformation of biomass. Herein we report an early example of the reduction of biomass-derived oxygenated compounds in water by magnetically induced catalysis. Non-coated and carbon-coated core-shell FeCo@Ni magnetic nanoparticles were used as the heating agent and the catalyst simultaneously. In this way it was possible to control the product distribution by adjusting the field amplitude applied during the magnetic catalysis, opening a precedent for this type of catalysis. Finally, the encapsulation of the magnetic nanoparticles in carbon (FeCo@Ni@C) strongly improved the stability of the magnetic catalyst in solution, making its reuse possible up to at least eight times in dioxane and four times in water.
Collapse
Affiliation(s)
- Christian Cerezo-Navarrete
- Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Avenida de los Naranjos S/N, 46022 Valencia, Spain
| | - Irene Mustieles Marin
- LPCNO, Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, UPS, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Héctor García-Miquel
- ITEAM Research Institute, Universitat Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Avenida de los Naranjos S/N, 46022 Valencia, Spain
| | - Bruno Chaudret
- LPCNO, Laboratoire de Physique et Chimie des Nano-Objets, INSA, CNRS, UPS, Université de Toulouse, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Luis M. Martínez-Prieto
- Instituto de Tecnología Química, Universitat Politècnica de València (UPV), Avenida de los Naranjos S/N, 46022 Valencia, Spain
- Departamento de Química Inorgánica (University of Seville), Instituto de Investigaciones Químicas (CSIC-US); Avenida Americo Vespucio 49, 41092 Seville, Spain
| |
Collapse
|
6
|
Estrader M, Soulantica K, Chaudret B. Organometallic Synthesis of Magnetic Metal Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marta Estrader
- CNRS: Centre National de la Recherche Scientifique LPCNO FRANCE
| | | | - Bruno Chaudret
- CNRS: Centre National de la Recherche Scientifique LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) 135 Avenue de Rangueil 31077 Toulouse FRANCE
| |
Collapse
|
7
|
Roman CL, da Silva Moura N, Wicker S, Dooley KM, Dorman JA. Induction Heating of Magnetically Susceptible Nanoparticles for Enhanced Hydrogenation of Oleic Acid. ACS APPLIED NANO MATERIALS 2022; 5:3676-3685. [PMID: 35372795 PMCID: PMC8961733 DOI: 10.1021/acsanm.1c04351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/04/2022] [Indexed: 06/13/2023]
Abstract
Radio frequency (RF) induction heating was compared to conventional thermal heating for the hydrogenation of oleic acid to stearic acid. The RF reaction demonstrated decreased coke accumulation and increased product selectivity at comparable temperatures over mesoporous Fe3O4 catalysts composed of 28-32 nm diameter nanoparticles. The Fe3O4 supports were decorated with Pd and Pt active sites and served as the local heat generators when subjected to an alternating magnetic field. For hydrogenation over Pd/Fe3O4, both heating methods gave similar liquid product selectivities, but thermogravimetric analysis-differential scanning calorimetry measurements showed no coke accumulation for the RF-heated catalyst versus 6.5 wt % for the conventionally heated catalyst. A different trend emerged when hydrogenation over Pt/Fe3O4 was performed. Compared to conventional heating, the RF increased the selectivity to stearic acid by an additional 15%. Based on these results, RF heating acting upon a magnetically susceptible nanoparticle catalyst would also be expected to positively impact systems with high coking rates, for example, nonoxidative dehydrogenations.
Collapse
Affiliation(s)
- Cameron L Roman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Natalia da Silva Moura
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Scott Wicker
- Department of Chemistry, Rhodes College, Memphis, Tennessee 38112, United States
| | - Kerry M Dooley
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - James A Dorman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
8
|
|
9
|
Kreissl H, Jin J, Lin S, Schüette D, Störtte S, Levin N, Chaudret B, Vorholt AJ, Bordet A, Leitner W. Commercial Cu 2 Cr 2 O 5 Decorated with Iron Carbide Nanoparticles as a Multifunctional Catalyst for Magnetically Induced Continuous-Flow Hydrogenation of Aromatic Ketones. Angew Chem Int Ed Engl 2021; 60:26639-26646. [PMID: 34617376 PMCID: PMC9298693 DOI: 10.1002/anie.202107916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Indexed: 11/10/2022]
Abstract
Copper chromite is decorated with iron carbide nanoparticles, producing a magnetically activatable multifunctional catalytic system. This system (ICNPs@Cu2 Cr2 O5 ) can reduce aromatic ketones to aromatic alcohols when exposed to magnetic induction. Under magnetic excitation, the ICNPs generate locally confined hot spots, selectively activating the Cu2 Cr2 O5 surface while the global temperature remains low (≈80 °C). The catalyst selectively hydrogenates a scope of benzylic and non-benzylic ketones under mild conditions (3 bar H2 , heptane), while ICNPs@Cu2 Cr2 O5 or Cu2 Cr2 O5 are inactive when the same global temperature is adjusted by conventional heating. A flow reactor is presented that allows the use of magnetic induction for continuous-flow hydrogenation at elevated pressure. The excellent catalytic properties of ICNPs@Cu2 Cr2 O5 for the hydrogenation of biomass-derived furfuralacetone are conserved for at least 17 h on stream, demonstrating for the first time the application of a magnetically heated catalyst to a continuously operated hydrogenation reaction in the liquid phase.
Collapse
Affiliation(s)
- Hannah Kreissl
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Jing Jin
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Sheng‐Hsiang Lin
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Dirk Schüette
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Sven Störtte
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets.Université de ToulouseINSAUPSLPCNOCNRS-UMR5215135 Avenue de Rangueil31077ToulouseFrance
| | - Andreas J. Vorholt
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion45470Mülheim an der RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
10
|
Kreissl H, Jin J, Lin S, Schüette D, Störtte S, Levin N, Chaudret B, Vorholt AJ, Bordet A, Leitner W. Commercial Cu
2
Cr
2
O
5
Decorated with Iron Carbide Nanoparticles as a Multifunctional Catalyst for Magnetically Induced Continuous‐Flow Hydrogenation of Aromatic Ketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hannah Kreissl
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Jing Jin
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Sheng‐Hsiang Lin
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| | - Dirk Schüette
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Sven Störtte
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Natalia Levin
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets. Université de Toulouse INSA UPS LPCNO CNRS-UMR5215 135 Avenue de Rangueil 31077 Toulouse France
| | - Andreas J. Vorholt
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Alexis Bordet
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion 45470 Mülheim an der Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringerweg 2 52074 Aachen Germany
| |
Collapse
|
11
|
Díaz-Puerto ZJ, Raya-Barón Á, van Leeuwen PWNM, Asensio JM, Chaudret B. Determination of the surface temperature of magnetically heated nanoparticles using a catalytic approach. NANOSCALE 2021; 13:12438-12442. [PMID: 34195744 DOI: 10.1039/d1nr02283k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein we describe a new method for the determination of the surface temperature of magnetically heated nanoparticles in solution using the temperature dependency of the catalytic performances of iron carbide nanoparticles coated with ruthenium (Fe2.2C@Ru) for acetophenone hydrodeoxygenation. A correlation between nanoparticle surface temperature and magnetic field could be established. Very high surface temperatures could be estimated in different solvents, which were also found similar at a given magnetic field and well above some solvent boiling points.
Collapse
|
12
|
Mille N, Faure S, Estrader M, Yi D, Marbaix J, De Masi D, Soulantica K, Millán A, Chaudret B, Carrey J. A setup to measure the temperature-dependent heating power of magnetically heated nanoparticles up to high temperature. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:054905. [PMID: 34243261 DOI: 10.1063/5.0038912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Magnetic heating, namely, the use of heat released by magnetic nanoparticles (MNPs) excited with a high-frequency magnetic field, has so far been mainly used for biological applications. More recently, it has been shown that this heat can be used to catalyze chemical reactions, some of them occurring at temperatures up to 700 °C. The full exploitation of MNP heating properties requires the knowledge of the temperature dependence of their heating power up to high temperatures. Here, a setup to perform such measurements is described based on the use of a pyrometer for high-temperature measurements and on a protocol based on the acquisition of cooling curves, which allows us to take into account calorimeter losses. We demonstrate that the setup permits to perform measurements under a controlled atmosphere on solid state samples up to 550 °C. It should in principle be able to perform measurements up to 900 °C. The method, uncertainties, and possible artifacts are described and analyzed in detail. The influence on losses of putting under vacuum different parts of the calorimeter is measured. To illustrate the setup possibilities, the temperature dependence of heating power is measured on four samples displaying very different behaviors. Their heating power increases or decreases with temperature, displaying temperature sensibilities ranging from -2.5 to +4.4% K-1. This setup is useful to characterize the MNPs for magnetically heated catalysis applications and to produce data that will be used to test models permitting to predict the temperature dependence of MNP heating power.
Collapse
Affiliation(s)
- N Mille
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - S Faure
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - M Estrader
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - D Yi
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - J Marbaix
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - D De Masi
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - K Soulantica
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - A Millán
- Instituto de Ciencia de Materiales de Aragón, Facultad de Ciencias, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - B Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| | - J Carrey
- Laboratoire de Physique et Chimie des Nano-Objets (LPNCO), UMR 5215 Université de Toulouse-INSA-CNRS-UPS, 135 av. de Rangueil, 31077 Toulouse Cedex, France
| |
Collapse
|
13
|
Novel Magnetic Nanohybrids: From Iron Oxide to Iron Carbide Nanoparticles Grown on Nanodiamonds. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The synthesis and characterization of a new line of magnetic hybrid nanostructured materials composed of spinel-type iron oxide to iron carbide nanoparticles grown on nanodiamond nanotemplates is reported in this study. The realization of these nanohybrid structures is achieved through thermal processing under vacuum at different annealing temperatures of a chemical precursor, in which very fine maghemite (γ-Fe2O3) nanoparticles seeds were developed on the surface of the nanodiamond nanotemplates. It is seen that low annealing temperatures induce the growth of the maghemite nanoparticle seeds to fine dispersed spinel-type non-stoichiometric ~5 nm magnetite (Fe3−xO4) nanoparticles, while intermediate annealing temperatures lead to the formation of single phase ~10 nm cementite (Fe3C) iron carbide nanoparticles. Higher annealing temperatures produce a mixture of larger Fe3C and Fe5C2 iron carbides, triggering simultaneously the growth of large-sized carbon nanotubes partially filled with these carbides. The magnetic features of the synthesized hybrid nanomaterials reveal the properties of their bearing magnetic phases, which span from superparamagnetic to soft and hard ferromagnetic and reflect the intrinsic magnetic properties of the containing phases, as well as their size and interconnection, dictated by the morphology and nature of the nanodiamond nanotemplates. These nanohybrids are proposed as potential candidates for important technological applications in nano-biomedicine and catalysis, while their synthetic route could be further tuned for development of new magnetic nanohybrid materials.
Collapse
|
14
|
Rivas-Murias B, Asensio JM, Mille N, Rodríguez-González B, Fazzini PF, Carrey J, Chaudret B, Salgueiriño V. Magnetically Induced CO 2 Methanation Using Exchange-Coupled Spinel Ferrites in Cuboctahedron-Shaped Nanocrystals. Angew Chem Int Ed Engl 2020; 59:15537-15542. [PMID: 32574410 DOI: 10.1002/anie.202004908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/16/2020] [Indexed: 11/08/2022]
Abstract
Magnetically induced catalysis can be promoted taking advantage of optimal heating properties from the magnetic nanoparticles to be employed. However, when unprotected, these heating agents that are usually air-sensitive, get sintered under the harsh catalytic conditions. In this context, we present, to the best of our knowledge, the first example of air-stable magnetic nanoparticles that: 1) show excellent performance as heating agents in the CO2 methanation catalyzed by Ni/SiRAlOx, with CH4 yields above 95 %, and 2) do not sinter under reaction conditions. To attain both characteristics we demonstrate, first the exchange-coupled magnetic approach as an alternative and effective way to tune the magnetic response and heating efficiency, and second, the chemical stability of cuboctahedron-shaped core-shell hard CoFe2 O4 -soft Fe3 O4 nanoparticles.
Collapse
Affiliation(s)
- Beatriz Rivas-Murias
- Departamento de Física Aplicada and CINBIO, Universidade de Vigo, 36310, Vigo, Spain
| | - Juan M Asensio
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077, Toulouse, France
| | - Nicolas Mille
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077, Toulouse, France
| | | | - Pier-Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077, Toulouse, France
| | - Julian Carrey
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077, Toulouse, France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO), Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, 31077, Toulouse, France
| | - Verónica Salgueiriño
- Departamento de Física Aplicada and CINBIO, Universidade de Vigo, 36310, Vigo, Spain
| |
Collapse
|
15
|
Rivas‐Murias B, Asensio JM, Mille N, Rodríguez‐González B, Fazzini P, Carrey J, Chaudret B, Salgueiriño V. Magnetically Induced CO
2
Methanation Using Exchange‐Coupled Spinel Ferrites in Cuboctahedron‐Shaped Nanocrystals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Beatriz Rivas‐Murias
- Departamento de Física Aplicada and CINBIO Universidade de Vigo 36310 Vigo Spain
| | - Juan M. Asensio
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO) Université de Toulouse CNRS INSA UPS 135 avenue de Rangueil 31077 Toulouse France
| | - Nicolas Mille
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO) Université de Toulouse CNRS INSA UPS 135 avenue de Rangueil 31077 Toulouse France
| | | | - Pier‐Francesco Fazzini
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO) Université de Toulouse CNRS INSA UPS 135 avenue de Rangueil 31077 Toulouse France
| | - Julian Carrey
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO) Université de Toulouse CNRS INSA UPS 135 avenue de Rangueil 31077 Toulouse France
| | - Bruno Chaudret
- Laboratoire de Physique et Chimie des Nano-Objets (LPCNO) Université de Toulouse CNRS INSA UPS 135 avenue de Rangueil 31077 Toulouse France
| | - Verónica Salgueiriño
- Departamento de Física Aplicada and CINBIO Universidade de Vigo 36310 Vigo Spain
| |
Collapse
|
16
|
Transition Metal Carbides (TMCs) Catalysts for Gas Phase CO2 Upgrading Reactions: A Comprehensive Overview. Catalysts 2020. [DOI: 10.3390/catal10090955] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Increasing demand for CO2 utilization reactions and the stable character of CO2 have motivated interest in developing highly active, selective and stable catalysts. Precious metal catalysts have been studied extensively due to their high activities, but their implementation for industrial applications is hindered due to their elevated cost. Among the materials which have comparatively low prices, transition metal carbides (TMCs) are deemed to display catalytic properties similar to Pt-group metals (Ru, Rh, Pd, Ir, Pt) in several reactions such as hydrogenation and dehydrogenation processes. In addition, they are excellent substrates to disperse metallic particles. Hence, the unique properties of TMCs make them ideal substitutes for precious metals resulting in promising catalysts for CO2 utilization reactions. This work aims to provide a comprehensive overview of recent advances on TMCs catalysts towards gas phase CO2 utilization processes, such as CO2 methanation, reverse water gas shift (rWGS) and dry reforming of methane (DRM). We have carefully analyzed synthesis procedures, performances and limitations of different TMCs catalysts. Insights on material characteristics such as crystal structure and surface chemistry and their connection with the catalytic activity are also critically reviewed.
Collapse
|
17
|
Ciotonea C, Hammi N, Dhainaut J, Marinova M, Ungureanu A, El Kadib A, Michon C, Royer S. Phyllosilicate‐derived Nickel‐cobalt Bimetallic Nanoparticles for the Catalytic Hydrogenation of Imines, Oximes and N‐heteroarenes. ChemCatChem 2020. [DOI: 10.1002/cctc.202000704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carmen Ciotonea
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
- Univ. Lille, CNRS, INRA Centrale Lille, Univ. Artois, FR 2638 – IMEC – Institut Michel-Eugène Chevreul 59000 Lille France
| | - Nisrine Hammi
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
- Department Euromed Research Center, Engineering Division Euro-Med University of Fes (UEMF) Route de Meknes, Rond-point de Bensouda 30070 Fès Morocco
| | - Jérémy Dhainaut
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| | - Maya Marinova
- Univ. Lille, CNRS, INRA Centrale Lille, Univ. Artois, FR 2638 – IMEC – Institut Michel-Eugène Chevreul 59000 Lille France
| | - Adrian Ungureanu
- “Gheorghe Asachi” Technical University of Iasi Faculty of Chemical Engineering and Environmental Protection 73 D. Mangeron Bvd. 700050 Iasi Romania
| | - Abdelkrim El Kadib
- Department Euromed Research Center, Engineering Division Euro-Med University of Fes (UEMF) Route de Meknes, Rond-point de Bensouda 30070 Fès Morocco
| | - Christophe Michon
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
- Université de Strasbourg, Université de Haute-Alsace Ecole Européenne de Chimie, Polymères et Matériaux, CNRS, LIMA, UMR 7042 25 rue Becquerel 67087 Strasbourg France
| | - Sébastien Royer
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide 59000 Lille France
| |
Collapse
|
18
|
Martínez-Prieto LM, Marbaix J, Asensio JM, Cerezo-Navarrete C, Fazzini PF, Soulantica K, Chaudret B, Corma A. Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis. ACS APPLIED NANO MATERIALS 2020; 3:7076-7087. [PMID: 32743352 PMCID: PMC7386363 DOI: 10.1021/acsanm.0c01392] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 05/27/2023]
Abstract
Magnetically induced catalysis using magnetic nanoparticles (MagNPs) as heating agents is a new efficient method to perform reactions at high temperatures. However, the main limitation is the lack of stability of the catalysts operating in such harsh conditions. Normally, above 500 °C, significant sintering of MagNPs takes place. Here we present encapsulated magnetic FeCo and Co NPs in carbon (Co@C and FeCo@C) as an ultrastable heating material suitable for high-temperature magnetic catalysis. Indeed, FeCo@C or a mixture of FeCo@C:Co@C (2:1) decorated with Ni or Pt-Sn showed good stability in terms of temperature and catalytic performances. In addition, consistent conversions and selectivities regarding conventional heating were observed for CO2 methanation (Sabatier reaction), propane dehydrogenation (PDH), and propane dry reforming (PDR). Thus, the encapsulation of MagNPs in carbon constitutes a major advance in the development of stable catalysts for high-temperature magnetically induced catalysis.
Collapse
Affiliation(s)
- Luis M. Martínez-Prieto
- ITQ,
Instituto de Tecnología Química, CSIC-Universitat Politècnica de València, Av. de los Naranjos S/N 46022, Valencia, España
| | - Julien Marbaix
- LPCNO,
Laboratoire de Physique et Chimie des Nano-Objets, UMR5215 INSA-CNRS
UPS, Institut des Sciences appliquées, 135, Avenue de Rangueil, F-31077 Toulouse, France
| | - Juan M. Asensio
- LPCNO,
Laboratoire de Physique et Chimie des Nano-Objets, UMR5215 INSA-CNRS
UPS, Institut des Sciences appliquées, 135, Avenue de Rangueil, F-31077 Toulouse, France
| | - Christian Cerezo-Navarrete
- ITQ,
Instituto de Tecnología Química, CSIC-Universitat Politècnica de València, Av. de los Naranjos S/N 46022, Valencia, España
| | - Pier-Francesco Fazzini
- LPCNO,
Laboratoire de Physique et Chimie des Nano-Objets, UMR5215 INSA-CNRS
UPS, Institut des Sciences appliquées, 135, Avenue de Rangueil, F-31077 Toulouse, France
| | - Katerina Soulantica
- LPCNO,
Laboratoire de Physique et Chimie des Nano-Objets, UMR5215 INSA-CNRS
UPS, Institut des Sciences appliquées, 135, Avenue de Rangueil, F-31077 Toulouse, France
| | - Bruno Chaudret
- LPCNO,
Laboratoire de Physique et Chimie des Nano-Objets, UMR5215 INSA-CNRS
UPS, Institut des Sciences appliquées, 135, Avenue de Rangueil, F-31077 Toulouse, France
| | - Avelino Corma
- ITQ,
Instituto de Tecnología Química, CSIC-Universitat Politècnica de València, Av. de los Naranjos S/N 46022, Valencia, España
| |
Collapse
|
19
|
Engineering Iron–Nickel Nanoparticles for Magnetically Induced CO
2
Methanation in Continuous Flow. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
De Masi D, Asensio JM, Fazzini P, Lacroix L, Chaudret B. Engineering Iron–Nickel Nanoparticles for Magnetically Induced CO
2
Methanation in Continuous Flow. Angew Chem Int Ed Engl 2020; 59:6187-6191. [DOI: 10.1002/anie.201913865] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/08/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Déborah De Masi
- Université de ToulouseINSALPCNO (Laboratoire de Physique et Chimie des Nano-Objets)CNRS, UMR 5215 135 Avenue de Rangueil 31077 Toulouse France
| | - Juan M. Asensio
- Université de ToulouseINSALPCNO (Laboratoire de Physique et Chimie des Nano-Objets)CNRS, UMR 5215 135 Avenue de Rangueil 31077 Toulouse France
| | - Pier‐Francesco Fazzini
- Université de ToulouseINSALPCNO (Laboratoire de Physique et Chimie des Nano-Objets)CNRS, UMR 5215 135 Avenue de Rangueil 31077 Toulouse France
| | - Lise‐Marie Lacroix
- Université de ToulouseINSALPCNO (Laboratoire de Physique et Chimie des Nano-Objets)CNRS, UMR 5215 135 Avenue de Rangueil 31077 Toulouse France
| | - Bruno Chaudret
- Université de ToulouseINSALPCNO (Laboratoire de Physique et Chimie des Nano-Objets)CNRS, UMR 5215 135 Avenue de Rangueil 31077 Toulouse France
| |
Collapse
|