1
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
2
|
Azreena IN, Lau HLN, Asikin-Mijan N, Izham SM, Hassan MA, Kennedy E, Stockenhuber M, Taufiq-Yap YH. Hydrodeoxygenation of oleic acid for effective diesel-like hydrocarbon production using zeolite-based catalysts. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02082-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
van der Wal LI, Oenema J, Smulders LCJ, Samplonius NJ, Nandpersad KR, Zečević J, de Jong KP. Control and Impact of Metal Loading Heterogeneities at the Nanoscale on the Performance of Pt/Zeolite Y Catalysts for Alkane Hydroconversion. ACS Catal 2021; 11:3842-3855. [PMID: 33833901 PMCID: PMC8022326 DOI: 10.1021/acscatal.1c00211] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/02/2021] [Indexed: 11/29/2022]
Abstract
![]()
The preparation of
zeolite-based bifunctional catalysts with low
noble metal loadings while maintaining optimal performance has been
studied. We have deposited 0.03 to 1.0 wt % Pt on zeolite H-USY (Si/Al
∼ 30 at./at.) using either platinum(II) tetraammine nitrate
(PTA, Pt(NH3)4(NO3)2)
or hexachloroplatinic(IV) acid (CPA, H2PtCl6·6H2O) and studied the nanoscale Pt loading heterogeneities
and global hydroconversion performance of the resulting Pt/Y catalysts.
Pt/Y samples prepared with PTA and a global Pt loading as low as 0.3
wt % Pt (nPt/nA = 0.08 mol/mol, where nPt is the number of Pt surface
sites and nA is the number of acid sites)
maintained catalytic performance during n-heptane
(T = 210–350 °C, P =
10 bar) as well as n-hexadecane (T = 170–280 °C, P = 5 bar) hydroisomerization
similar to a 1.0 wt % Pt sample. For Pt/Y catalysts prepared with
CPA, a loading of 0.3 wt % Pt (nPt/nA = 0.08 mol/mol) sufficed for n-heptane hydroisomerization, whereas a detrimental effect on n-hexadecane hydroisomerization was observed, in particular
undesired secondary cracking occurred to a significant extent. The
differences between PTA and CPA are explained by differences in Pt
loading per zeolite Y crystal (size ∼ 500 nm), shown from extensive
transmission electron microscopy energy-dispersive X-ray spectroscopy
experiments, whereby crystal-based nPt/nA ratios could be determined. From
earlier studies, it is known that the Al content per crystal of USY
varied tremendously and that PTA preferentially is deposited on crystals
with higher Al content due to ion-exchange with zeolite protons. Here,
we show that this preferential deposition of PTA on Al-rich crystals
led to a more constant value of nPt/nA ratio from one zeolite crystal to another,
which was beneficial for catalytic performance. Use of CPA led to
a large variation of Pt loading independent of Al content, giving
rise to larger variations of nPt/nA ratio from crystal to crystal that negatively
affected the catalytic performance. This study thus shows the impact
of local metal loading variations at the zeolite crystal scale (nanoscale)
caused by different interactions of metal precursors with the zeolite,
which are essential to design and synthesize optimal catalysts, in
particular at low noble metal loadings.
Collapse
Affiliation(s)
- Lars I. van der Wal
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jogchum Oenema
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Luc C. J. Smulders
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nonne J. Samplonius
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Karan R. Nandpersad
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Jovana Zečević
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Krijn P. de Jong
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Nasser GA, Ahmed MHM, Firdaus MA, Sanhoob MA, Bakare IA, Al-Shafei EN, Al-Bahar MZ, Al-Jishi AN, Yamani ZH, Choi KH, Muraza O. Nano BEA zeolite catalysts for the selective catalytic cracking of n-dodecane to light olefins. RSC Adv 2021; 11:7904-7912. [PMID: 35423304 PMCID: PMC8695071 DOI: 10.1039/d0ra07899a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
Nano BEA zeolite catalysts were synthesized and modified by desilication and then ion-exchanged with Co. The desilication was carried out using 0.1 M of NaOH. The synthesized and modified nano BEA catalysts were characterized via different characterization techniques. Ammonia temperature program desorption (NH3-TPD) and the pyridine Fourier transform infrared (pyridine-FTIR) were utilized to investigate the acidity of catalysts. X-ray diffraction (XRD), 27Al and 29Si nuclear magnetic resonance (NMR) spectroscopy techniques were used to examine the structure of the catalysts. The XRD patterns of the as-synthesized nano BEA catalysts were identical to that of the reference, while the NMR analysis revealed the distribution of silicon and aluminum in the BEA structure. The scanning electron microscope (SEM) analysis confirmed that the fabricated catalysts were less than 100 nm. The desilication and Co ion-exchange altered the acidity of the catalyst. The catalysts were evaluated in the cracking of sssssss to light olefins in the temperature range from 400 °C to 600 °C. The conversion increased with the increase in the reaction temperature for both catalysts; the conversion was above 90% for the Co-BEA catalyst at a temperature above 450 °C. The yield of light olefins also increased at higher temperatures for both catalysts, while at a lower temperature the yield to light olefins was ca. 40% over that of Co-BEA. Nano BEA zeolite catalysts were synthesized and modified by desilication and then ion-exchanged with Co. The desilication was carried out using 0.1 M of NaOH.![]()
Collapse
Affiliation(s)
- Galal A Nasser
- Center of Excellence in Nanotechnology and Chemical Engineering Department, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - M H M Ahmed
- Center of Excellence in Nanotechnology and Chemical Engineering Department, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Mochamad A Firdaus
- Center of Excellence in Nanotechnology and Chemical Engineering Department, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Mohammed A Sanhoob
- Center of Excellence in Nanotechnology and Chemical Engineering Department, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Idris A Bakare
- Center of Excellence in Nanotechnology and Chemical Engineering Department, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - E N Al-Shafei
- Research and Development Center, Saudi Aramco Dhahran 31311 Saudi Arabia
| | - M Z Al-Bahar
- Research and Development Center, Saudi Aramco Dhahran 31311 Saudi Arabia
| | - A N Al-Jishi
- Research and Development Center, Saudi Aramco Dhahran 31311 Saudi Arabia
| | - Z H Yamani
- Center of Excellence in Nanotechnology and Chemical Engineering Department, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Ki-Hyouk Choi
- Research and Development Center, Saudi Aramco Dhahran 31311 Saudi Arabia
| | - Oki Muraza
- Center of Excellence in Nanotechnology and Chemical Engineering Department, King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| |
Collapse
|
5
|
Yang L, Xing S, Luo W, Yang GX, Wang Z, Lv P. Fabrication of sea urchin-like hierarchical porous SAPO-11 molecular sieves toward hydrogenation of lipid to jet fuel. NEW J CHEM 2021. [DOI: 10.1039/d0nj03848b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel sea urchin-like hierarchical porous SAPO-11 molecular sieves were fabricated by adding CTAB after pre-crystallization. High isomer selectivity (78.2%) was observed for the sea urchin-like SAPO-11 loaded with Ni.
Collapse
Affiliation(s)
- Lingmei Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
- CAS Key Laboratory of Renewable Energy
- Guangzhou 510640
| | - Shiyou Xing
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Wen Luo
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
- CAS Key Laboratory of Renewable Energy
- Guangzhou 510640
| | - Gai xiu Yang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
- CAS Key Laboratory of Renewable Energy
- Guangzhou 510640
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
- CAS Key Laboratory of Renewable Energy
- Guangzhou 510640
| | - Pengmei Lv
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences
- Guangzhou 510640
- China
- CAS Key Laboratory of Renewable Energy
- Guangzhou 510640
| |
Collapse
|
6
|
Rey J, Bignaud C, Raybaud P, Bučko T, Chizallet C. Dynamic Features of Transition States for β-Scission Reactions of Alkenes over Acid Zeolites Revealed by AIMD Simulations. Angew Chem Int Ed Engl 2020; 59:18938-18942. [PMID: 32568440 DOI: 10.1002/anie.202006065] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Indexed: 11/11/2022]
Abstract
Zeolite-catalyzed alkene cracking is key to optimize the size of hydrocarbons. The nature and stability of intermediates and transition states (TS) are, however, still debated. We combine transition path sampling and blue moon ensemble density functional theory simulations to unravel the behavior of C7 alkenes in CHA zeolite. Free energy profiles are determined, linking π-complexes, alkoxides and carbenium ions, for B1 (secondary to tertiary) and B2 (tertiary to secondary) β-scissions. B1 is found to be easier than B2 . The TS for B1 occurs at the breaking of the C-C bond, while for B2 it is the proton transfer from propenium to the zeolite. We highlight the dynamic behaviors of the various intermediates along both pathways, which reduce activation energies with respect to those previously evaluated by static approaches. We finally revisit the ranking of isomerization and cracking rate constants, which are crucial for future kinetic studies.
Collapse
Affiliation(s)
- Jérôme Rey
- IFP Energies nouvelles, Rond-Point de l'échangeur de Solaize, BP3, 69360, Solaize, France
| | - Charles Bignaud
- IFP Energies nouvelles, Rond-Point de l'échangeur de Solaize, BP3, 69360, Solaize, France.,Département de chimie, École normale supérieure, PSL University, 75005, Paris, France
| | - Pascal Raybaud
- IFP Energies nouvelles, Rond-Point de l'échangeur de Solaize, BP3, 69360, Solaize, France
| | - Tomáš Bučko
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 84215, Bratislava, Slovakia.,Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 84236, Bratislava, Slovakia
| | - Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'échangeur de Solaize, BP3, 69360, Solaize, France
| |
Collapse
|
7
|
Rey J, Bignaud C, Raybaud P, Bučko T, Chizallet C. Dynamic Features of Transition States for β‐Scission Reactions of Alkenes over Acid Zeolites Revealed by AIMD Simulations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jérôme Rey
- IFP Energies nouvelles Rond-Point de l'échangeur de Solaize, BP3 69360 Solaize France
| | - Charles Bignaud
- IFP Energies nouvelles Rond-Point de l'échangeur de Solaize, BP3 69360 Solaize France
- Département de chimie École normale supérieure PSL University 75005 Paris France
| | - Pascal Raybaud
- IFP Energies nouvelles Rond-Point de l'échangeur de Solaize, BP3 69360 Solaize France
| | - Tomáš Bučko
- Department of Physical and Theoretical Chemistry Faculty of Natural Sciences Comenius University in Bratislava Ilkovičova 6 84215 Bratislava Slovakia
- Institute of Inorganic Chemistry Slovak Academy of Sciences Dúbravská cesta 9 84236 Bratislava Slovakia
| | - Céline Chizallet
- IFP Energies nouvelles Rond-Point de l'échangeur de Solaize, BP3 69360 Solaize France
| |
Collapse
|
8
|
Mendes PSF, Silva JM, Ribeiro MF, Daudin A, Bouchy C. Bifunctional Intimacy and its Interplay with Metal‐Acid Balance in Shaped Hydroisomerization Catalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202000624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Pedro S. F. Mendes
- Centro de Química Estrutural and Departamento de Engenharia Química Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
- Catalysis, Biocatalysis and Separation Division IFP Energies Nouvelles Rond-point de l'échangeur de Solaize BP 3 69360 Solaize France
- Present address: Laboratory for Chemical Technology Ghent University 9052 Ghent Belgium
| | - João M. Silva
- Centro de Química Estrutural and Departamento de Engenharia Química Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
- ADEQ-ISEL Instituto Superior de Engenharia de Lisboa Instituto Politécnico de Lisboa R. Cons. Emídio Navarro 1959-007 Lisboa Portugal
| | - M. Filipa Ribeiro
- Centro de Química Estrutural and Departamento de Engenharia Química Instituto Superior Técnico Universidade de Lisboa Av. Rovisco Pais 1049-001 Lisboa Portugal
| | - Antoine Daudin
- Catalysis, Biocatalysis and Separation Division IFP Energies Nouvelles Rond-point de l'échangeur de Solaize BP 3 69360 Solaize France
| | - Christophe Bouchy
- Catalysis, Biocatalysis and Separation Division IFP Energies Nouvelles Rond-point de l'échangeur de Solaize BP 3 69360 Solaize France
| |
Collapse
|
9
|
Sun G, Alexandrova AN, Sautet P. Structural Rearrangements of Subnanometer Cu Oxide Clusters Govern Catalytic Oxidation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00824] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Geng Sun
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California Nano Systems Institute, Los Angeles, California 90095, United States
| | - Philippe Sautet
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry & Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California Nano Systems Institute, Los Angeles, California 90095, United States
| |
Collapse
|