1
|
Wang B, Zhang W, Zhong Y, Guo Y, Wang X, Zhang X. Fluorescent cellulose hydrogels based on corn stalk of double sulfhydryl functional group modification for Hg(II) removal and detection. Int J Biol Macromol 2024; 281:136427. [PMID: 39389504 DOI: 10.1016/j.ijbiomac.2024.136427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/23/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Ions of mercury, one of the most hazardous heavy metals in nature, pose serious risks to the environment and human health. Blue sulfur-doped carbon dots (SCDs) from corn stalks were utilized as material. The SCDs were incorporated into a carboxylated hydrogel modified with sulfur, and a compound gel (SCDs-KTOCS gel) was successfully fabricated for simultaneous fluorescence detection and Hg(II) adsorption. This enabled the effective identification and removal of Hg(II) from contaminated water. The chemical content, fluorescence properties, and adsorption behaviors of the SCDs-KTOCS-gels were analyzed. The results demonstrate that the SCDs-KTOCS-gels exhibited effective Hg(II) adsorption (193 mg/g) and an extensive linear spectrum for Hg(II) fluorescence emission (150-500 mg/L; detection limit = 1.5668 mg/L). The adsorption values fit well with the Temkin models and pseudo-second-order kinetics. Additionally, Hg(II) detection and adsorption in the SCDs-KTOCS-gels were examined. By exchanging the existing probe for a suitable one that fits various relevant applications, this study suggests an environmentally friendly and sustainable method of producing materials for removing and detecting Hg(II) and constructing a fluorescence hydrogel for the detection and adsorption of different metals.
Collapse
Affiliation(s)
- Boyun Wang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wanqi Zhang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Zhong
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuan Guo
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ximing Wang
- College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot 010018, China.
| | - Xiaotao Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Key Laboratory of Sandy Shrubs Fibrosis and Energy Development and Utilization, Hohhot 010018, China; Key Laboratory of Agricultural Ecological Security and Green Development at Universities of Inner Mongolia Autonomous, Hohhot 010018, China.
| |
Collapse
|
2
|
Jagadeeswararao M, Galian RE, Pérez-Prieto J. Photocatalysis Based on Metal Halide Perovskites for Organic Chemical Transformations. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:94. [PMID: 38202549 PMCID: PMC10780689 DOI: 10.3390/nano14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/19/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024]
Abstract
Heterogeneous photocatalysts incorporating metal halide perovskites (MHPs) have garnered significant attention due to their remarkable attributes: strong visible-light absorption, tuneable band energy levels, rapid charge transfer, and defect tolerance. Additionally, the promising optical and electronic properties of MHP nanocrystals can be harnessed for photocatalytic applications through controlled crystal structure engineering, involving composition tuning via metal ion and halide ion variations, dimensional tuning, and surface chemistry modifications. Combination of perovskites with other materials can improve the photoinduced charge separation and charge transfer, building heterostructures with different band alignments, such as type-II, Z-scheme, and Schottky heterojunctions, which can fine-tune redox potentials of the perovskite for photocatalytic organic reactions. This review delves into the activation of organic molecules through charge and energy transfer mechanisms. The review further investigates the impact of crystal engineering on photocatalytic activity, spanning a diverse array of organic transformations, such as C-X bond formation (X = C, N, and O), [2 + 2] and [4 + 2] cycloadditions, substrate isomerization, and asymmetric catalysis. This study provides insights to propel the advancement of metal halide perovskite-based photocatalysts, thereby fostering innovation in organic chemical transformations.
Collapse
Affiliation(s)
| | - Raquel E. Galian
- Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain;
| | - Julia Pérez-Prieto
- Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain;
| |
Collapse
|
3
|
Jawale N, Arbuj S, Umarji G, Shinde M, Kale B, Rane S. Ni loaded SnS 2 hexagonal nanosheets for photocatalytic hydrogen generation via water splitting. RSC Adv 2023; 13:2418-2426. [PMID: 36741188 PMCID: PMC9841975 DOI: 10.1039/d2ra07954b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 01/18/2023] Open
Abstract
Herein we have prepared the Ni-decorated SnS2 nanosheets with varying concentrations of Ni from 1 to 10 mol% (1, 2.5, 5, and 10 mol%) and studied their various physicochemical and photocatalytic properties. The chemical reduction technique was utilized to load the Ni nanoparticles on SnS2 nanosheets. The synthesized Ni decorated SnS2 (denoted as Ni-SnS2) was characterized using different spectroscopic techniques such as X-ray diffraction, diffuse reflectance UV-vis and photoluminescence spectroscopy, field emission scanning electron microscopy (FESEM), and field emission transmission electron microscopy (FETEM). XRD revealed the formation of the highly crystalline hexagonal phase of SnS2 but for nickel loading there is no additional peak observed. Further, the as-prepared Ni-SnS2 nano-photocatalyst shows absorption behaviour in the visible region, and photoluminescence spectra of the Ni-SnS2 nanostructures show band edge emission centred at 524 nm, and the peak intensity decreases with Ni loading. The FE-SEM and FE-TEM confirm the formation of hexagonal sheets having evenly distributed Ni nanoparticles of size ∼5-10 nm. BET surface area analysis was observed to be enhanced with Ni loading. The photocatalytic performance of the prepared Ni-SnS2 nanosheets was evaluated for hydrogen generation via water splitting under a 400 W mercury vapour lamp. Among the prepared Ni-SnS2 nanostructures, the Ni loaded with 2.5 mol% provided the highest hydrogen production i.e., 1429.2 μmol 0.1 g-1 (% AQE 2.32) in four hours, almost 1.6 times that of pristine SnS2 i.e., 846 μmol 0.1 g-1. Furthermore, the photocatalytic performance of the catalyst is also correlated with the photoconductivity by measuring the photocurrent. The photoconductivity of the samples is revealed to be stable and the conductivity of 2.5 mol% Ni-SnS2 is higher i.e. 20 times that of other Ni-SnS2 and pristine SnS2 catalysts.
Collapse
Affiliation(s)
- Niteen Jawale
- Centre for Materials for Electronics Technology (C-MET) Off Pashan Road, Panchawati Pune-411008 Maharashtra India +912025898180 +912025899273
| | - Sudhir Arbuj
- Centre for Materials for Electronics Technology (C-MET) Off Pashan Road, Panchawati Pune-411008 Maharashtra India +912025898180 +912025899273
| | - Govind Umarji
- Centre for Materials for Electronics Technology (C-MET) Off Pashan Road, Panchawati Pune-411008 Maharashtra India +912025898180 +912025899273
| | - Manish Shinde
- Centre for Materials for Electronics Technology (C-MET) Off Pashan Road, Panchawati Pune-411008 Maharashtra India +912025898180 +912025899273
| | - Bharat Kale
- Centre for Materials for Electronics Technology (C-MET) Off Pashan Road, Panchawati Pune-411008 Maharashtra India +912025898180 +912025899273
| | - Sunit Rane
- Centre for Materials for Electronics Technology (C-MET) Off Pashan Road, Panchawati Pune-411008 Maharashtra India +912025898180 +912025899273
| |
Collapse
|
4
|
Nazar de Souza AP, de Souza Tomaso LP, S. da Silva VA, S. da Silva GF, Santos ECS, de S. Baêta E, Brant de Campos J, Carvalho NMF, Malta LFB, Senra JD. Mild and Rapid Light-Driven Suzuki-Miyaura Reactions Catalyzed by AuPd Nanoparticles in Water at Room Temperature. Chemistry 2022; 11:e202200177. [PMID: 36457181 PMCID: PMC9716040 DOI: 10.1002/open.202200177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/30/2022] [Indexed: 12/03/2022]
Abstract
Organic reactions carried out in water under mild conditions are state-of-the-art in terms of environmentally benign chemical processes. In this direction, plasmonic catalysis can aid in accomplishing such tasks. In the present work, cyclodextrin-mediated AuPd bimetallic nanoparticles (NPs) were applied in room-temperature aqueous Suzuki-Miyaura reactions aiming at preparing biaryl products based on fluorene, isatin, benzimidazole and resorcinol, with yields of 77 % up to 95 %. AuPd NPs were revealed to be a physical mixture of Au and Pd particles circa 20 and 2 nm, respectively, through X-ray diffraction, dynamic light scattering, UV-Vis spectroscopy and transmission electron microscopy analyses.
Collapse
Affiliation(s)
| | | | | | | | - Evelyn C. S. Santos
- Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de Janeiro21941-909Brazil,Centro Brasileiro de Pesquisas FísicasRio de Janeiro22290-180Brazil
| | - Eustáquio de S. Baêta
- Departamento de Engenharia MecânicaUniversidade do Estado doRio de Janeiro20940-200Brazil
| | - José Brant de Campos
- Departamento de Engenharia MecânicaUniversidade do Estado doRio de Janeiro20940-200Brazil
| | - Nakédia M. F. Carvalho
- Instituto de QuímicaUniversidade do Estado do Rio de JaneiroRio de Janeiro20550-900Brazil
| | | | - Jaqueline D. Senra
- Instituto de QuímicaUniversidade do Estado do Rio de JaneiroRio de Janeiro20550-900Brazil
| |
Collapse
|
5
|
Lai TH, Tsao CW, Fang MJ, Wu JY, Chang YP, Chiu YH, Hsieh PY, Kuo MY, Chang KD, Hsu YJ. Au@Cu 2O Core-Shell and Au@Cu 2Se Yolk-Shell Nanocrystals as Promising Photocatalysts in Photoelectrochemical Water Splitting and Photocatalytic Hydrogen Production. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40771-40783. [PMID: 36040289 DOI: 10.1021/acsami.2c07145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we demonstrated the practical use of Au@Cu2O core-shell and Au@Cu2Se yolk-shell nanocrystals as photocatalysts in photoelectrochemical (PEC) water splitting and photocatalytic hydrogen (H2) production. The samples were prepared by conducting a sequential ion-exchange reaction on a Au@Cu2O core-shell nanocrystal template. Au@Cu2O and Au@Cu2Se displayed enhanced charge separation as the Au core and yolk can attract photoexcited electrons from the Cu2O and Cu2Se shells. The localized surface plasmon resonance (LSPR) of Au, on the other hand, can facilitate additional charge carrier generation for Cu2O and Cu2Se. Finite-difference time-domain simulations were carried out to explore the amplification of the localized electromagnetic field induced by the LSPR of Au. The charge transfer dynamics and band alignment of the samples were examined with time-resolved photoluminescence and ultraviolet photoelectron spectroscopy. As a result of the improved interfacial charge transfer, Au@Cu2O and Au@Cu2Se exhibited a substantially larger photocurrent of water reduction and higher photocatalytic activity of H2 production than the corresponding pure counterpart samples. Incident photon-to-current efficiency measurements were conducted to evaluate the contribution of the plasmonic effect of Au to the enhanced photoactivity. Relative to Au@Cu2O, Au@Cu2Se was more suited for PEC water splitting and photocatalytic H2 production by virtue of the structural advantages of yolk-shell architectures. The demonstrations from the present work may shed light on the rational design of sophisticated metal-semiconductor yolk-shell nanocrystals, especially those comprising metal selenides, for superior photocatalytic applications.
Collapse
Affiliation(s)
- Ting-Hsuan Lai
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chun-Wen Tsao
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Mei-Jing Fang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jhen-Yang Wu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yu-Peng Chang
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yi-Hsuan Chiu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ping-Yen Hsieh
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ming-Yu Kuo
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kao-Der Chang
- Mechanical and Systems Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| |
Collapse
|
6
|
Banda P, Mucherla R. Palladium-Supported Polydopamine-Coated NiFe 2O 4@TiO 2: A Sole Photocatalyst for Suzuki and Sonogashira Coupling Reactions under Sunlight Irradiation. ACS OMEGA 2022; 7:29356-29368. [PMID: 36033688 PMCID: PMC9404510 DOI: 10.1021/acsomega.2c03603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The effective utilization of solar energy in synthetic organic chemistry has gained extensive attention owing to its enormous energy and environmentally benign nature. In this context, we designed and synthesized a magnetically retrievable, sole palladium (Pd)-supported polydopamine-coated core@shell (NiFe2O4@TiO2) heterogeneous nanophotocatalyst for Suzuki and Sonogashira coupling reactions under sunlight irradiation. The synthesized catalyst was characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared, UV-vis, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometer analysis. The photocatalytic activity of the synthesized nanocatalyst under sunlight irradiation was assessed for both Suzuki and Sonogashira coupling reactions, where it worked excellently well with a high yield of the product up to 98 and 96%, respectively. Its efficacy was also investigated in the conversion of substituted substrates in both the coupling reactions into desired biaryls and diarylacetylenes. Unique features of the synthesized catalyst are (i) its effective performance for both the aforesaid coupling reactions under ambient reaction conditions for a short reaction time in polar protic solvents (ethanolic water/EtOH) with good yield without any byproduct, (ii) magnetic retrieval of the catalyst from the reaction mixture employing an external magnet is an added advantage, and (iii) the retrieved catalyst could potentially be reutilized for up to five consecutive runs without appreciable diminution of catalytic efficacy, and its stability was confirmed by inductively coupled plasma optical emission spectroscopy analysis and XRD.
Collapse
|
7
|
Silica-coated magnetic palladium nanocatalyst for Suzuki-Miyaura cross-coupling. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Wang C, Weng B, Keshavarz M, Yang MQ, Huang H, Ding Y, Lai F, Aslam I, Jin H, Romolini G, Su BL, Steele JA, Hofkens J, Roeffaers MBJ. Photothermal Suzuki Coupling Over a Metal Halide Perovskite/Pd Nanocube Composite Catalyst. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17185-17194. [PMID: 35385650 DOI: 10.1021/acsami.1c24710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The development of improved catalysts capable of performing the Suzuki coupling reaction has attracted considerable attention. Recent findings have shown that the use of photoactive catalysts improves the performance, while the reaction mechanism and temperature-dependent performance of such systems are still under debate. Herein, we report Pd nanocubes/CsPbBr3 as an efficient catalyst for the photothermal Suzuki reaction. The photo-induced and thermal contribution to the overall catalytic performance has been investigated. Light controls the activity at temperatures around and below 30 °C, while thermal catalysis determines the reactivity at higher temperatures. The Pd/CsPbBr3 catalyst exhibits 11 times higher activity than pure CsPbBr3 at 30 °C due to reduced activation barrier and facilitated charge carrier dynamics. Furthermore, the alkoxide radicals (R-O-) for the Suzuki reaction are experimentally and theoretically confirmed, and photogenerated holes are proven to be crucial for cleaving C-B bonds of phenylboronic acids to drive the reaction. This work prescribes a general strategy to study photothermal catalysis and offers a mechanistic guideline for photothermal Suzuki reactions.
Collapse
Affiliation(s)
- Chunhua Wang
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Masoumeh Keshavarz
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, P. R. China
| | - Haowei Huang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Yang Ding
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Imran Aslam
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Handong Jin
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Giacomo Romolini
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bao-Lian Su
- Laboratory of Inorganic Materials Chemistry (CMI), University of Namur, 61 rue de Bruxelles, B-5000 Namur, Belgium
| | - Julian A Steele
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Johan Hofkens
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
9
|
Kumar A, Choudhary P, Kumar A, Camargo PHC, Krishnan V. Recent Advances in Plasmonic Photocatalysis Based on TiO 2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2101638. [PMID: 34396695 DOI: 10.1002/smll.202101638] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/06/2021] [Indexed: 05/24/2023]
Abstract
Plasmonic photocatalysis has emerged as a prominent and growing field. It enables the efficient use of sunlight as an abundant and renewable energy source to drive a myriad of chemical reactions. For instance, plasmonic photocatalysis in materials comprising TiO2 and plasmonic nanoparticles (NPs) enables effective charge carrier separation and the tuning of optical response to longer wavelength regions (visible and near infrared). In fact, TiO2 -based materials and plasmonic effects are at the forefront of heterogeneous photocatalysis, having applications in energy conversion, production of liquid fuels, wastewater treatment, nitrogen fixation, and organic synthesis. This review aims to comprehensively summarize the fundamentals and to provide the guidelines for future work in the field of TiO2 -based plasmonic photocatalysis comprising the above-mentioned applications. The concepts and state-of-the-art description of important parameters including the formation of Schottky junctions, hot electron generation and transfer, near field electromagnetic enhancement, plasmon resonance energy transfer, scattering, and photothermal heating effects have been covered in this review. Synthetic approaches and the effect of various physicochemical parameters in plasmon-mediated TiO2 -based materials on performances are discussed. It is envisioned that this review may inspire and provide insights into the rational development of the next generation of TiO2 -based plasmonic photocatalysts with target performances and enhanced selectivities.
Collapse
Affiliation(s)
- Ajay Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Priyanka Choudhary
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Ashish Kumar
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| | - Pedro H C Camargo
- University of Helsinki, Department of Chemistry, A.I. Virtasen aukio 1, Helsinki, Finland
| | - Venkata Krishnan
- School of Basic Sciences and Adv. Mater. Research Center, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
10
|
Abstract
Over the past few decades, the use of transition metal nanoparticles (NPs) in catalysis has attracted much attention and their use in C–C bond forming reactions constitutes one of their most important applications. A huge variety of metal NPs, which have showed high catalytic activity for C–C bond forming reactions, have been developed up to now. Many kinds of stabilizers, such as inorganic materials, magnetically recoverable materials, porous materials, organic–inorganic composites, carbon materials, polymers, and surfactants have been utilized to develop metal NPs catalysts. This review classified and outlined the categories of metal NPs by the type of support.
Collapse
|
11
|
Mofatehnia P, Mohammadi Ziarani G, Elhamifar D, Badiei A. A new yolk-shell hollow mesoporous nanocomposite, Fe3O4@SiO2@MCM41-IL/WO42-, as a catalyst in the synthesis of novel pyrazole coumarin compounds. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS 2021; 155:110097. [DOI: 10.1016/j.jpcs.2021.110097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
12
|
Magnetic chitosan-functionalized cobalt-NHC: Synthesis, characterization and catalytic activity toward Suzuki and Sonogashira cross-coupling reactions of aryl chlorides. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
13
|
Shang W, Li Y, Huang H, Lai F, Roeffaers MBJ, Weng B. Synergistic Redox Reaction for Value-Added Organic Transformation via Dual-Functional Photocatalytic Systems. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04815] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Weike Shang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, No. 58, YanTa Road, Xi’an 710054, People’s Republic of China
| | - Yuangang Li
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, No. 58, YanTa Road, Xi’an 710054, People’s Republic of China
| | - Haowei Huang
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Feili Lai
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Maarten B. J. Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
14
|
Chen YA, Wang YT, Moon HS, Yong K, Hsu YJ. Yolk-shell nanostructures: synthesis, photocatalysis and interfacial charge dynamics. RSC Adv 2021; 11:12288-12305. [PMID: 35423745 PMCID: PMC8696994 DOI: 10.1039/d1ra00803j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022] Open
Abstract
Solar energy has long been regarded as a promising alternative and sustainable energy source. In this regard, photocatalysts emerge as a versatile paradigm that can practically transform solar energy into chemical energy. At present, unsatisfactory conversion efficiency is a major obstacle to the widespread deployment of photocatalysis technology. Many structural engineering strategies have been proposed to address the issue of insufficient activity for semiconductor photocatalysts. Among them, creation of yolk-shell nanostructures which possess many beneficial features, such as large surface area, efficient light harvesting, homogeneous catalytic environment and enhanced molecular diffusion kinetics, has attracted particular attention. This review summarizes the developments that have been made for the preparation and photocatalytic applications of yolk-shell nanostructures. Additional focus is placed on the realization of interfacial charge dynamics and the possibility of achieving spatial separation of charge carriers for this unique nanoarchitecture as charge transfer is the most critical factor determining the overall photocatalytic efficiency. A future perspective that can facilitate the advancement of using yolk-shell nanostructures in sophisticated photocatalytic systems is also presented.
Collapse
Affiliation(s)
- Yi-An Chen
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan
| | - Yu-Ting Wang
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan
| | - Hyun Sik Moon
- Surface Chemistry Laboratory of Electronic Materials, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 790-784 Korea
| | - Kijung Yong
- Surface Chemistry Laboratory of Electronic Materials, Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) Pohang 790-784 Korea
| | - Yung-Jung Hsu
- Department of Materials Science and Engineering, National Chiao Tung University Hsinchu 30010 Taiwan
- Center for Emergent Functional Matter Science, National Chiao Tung University Hsinchu 30010 Taiwan
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University Hsinchu 30010 Taiwan
| |
Collapse
|
15
|
Recent Progress in Plasmonic Hybrid Photocatalysis for CO2 Photoreduction and C–C Coupling Reactions. Catalysts 2021. [DOI: 10.3390/catal11020155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Plasmonic hybrid nanostructures have been investigated as attractive heterogeneous photocatalysts that can utilize sunlight to produce valuable chemicals. In particular, the efficient photoconversion of CO2 into a stable hydrocarbon with sunlight can be a promising strategy to achieve a sustainable human life on Earth. The next step for hydrocarbons once obtained from CO2 is the carbon–carbon coupling reactions to produce a valuable chemical for energy storage or fine chemicals. For these purposes, plasmonic nanomaterials have been widely investigated as a visible-light-induced photocatalyst to achieve increased efficiency of photochemical reactions with sunlight. In this review, we discuss recent achievements involving plasmonic hybrid photocatalysts that have been investigated for CO and CO2 photoreductions to form multi-carbon products and for C–C coupling reactions, such as the Suzuki–Miyaura coupling reactions.
Collapse
|
16
|
Tang H, Yang M, Li X, Zhou ML, Bao YS, Cui XY, Zhao K, Zhang YY, Han ZB. Synthesis of biaryl compounds via Suzuki homocoupling reactions catalyzed by metal organic frameworks encapsulated with palladium nanoparticles. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
17
|
Rosenthal M, Lindner JKN, Gerstmann U, Meier A, Schmidt WG, Wilhelm R. A photoredox catalysed Heck reaction via hole transfer from a Ru(ii)-bis(terpyridine) complex to graphene oxide. RSC Adv 2020; 10:42930-42937. [PMID: 35514879 PMCID: PMC9058128 DOI: 10.1039/d0ra08749a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 12/23/2022] Open
Abstract
The attachment of homoleptic Ru bis-terpy complexes on graphene oxide significantly improved the photocatalytic activity of the complexes. These straightforward complexes were applied as photocatalysts in a Heck reaction. Due to covalent functionalization on graphene oxide, which functions as an electron reservoir, excellent yields were obtained. DFT investigations of the charge redistribution revealed efficient hole transfer from the excited Ru unit towards the graphene oxide.
Collapse
Affiliation(s)
- Marta Rosenthal
- Department of Chemistry, University of Paderborn Warburgerstr. 100 33098 Paderborn Germany
| | - Jörg K N Lindner
- Department Physics, Experimental Physics, University of Paderborn Warburgerstr. 100 33098 Paderborn Germany
| | - Uwe Gerstmann
- Department of Physics, Theoretical Physics, University of Paderborn Warburgerstr. 100 33098 Paderborn Germany
| | - Armin Meier
- Institute of Organic Chemistry, Clausthal University of Technology Leibnizstr. 6 38678 Clausthal-Zellerfeld Germany
| | - W Gero Schmidt
- Department of Physics, Theoretical Physics, University of Paderborn Warburgerstr. 100 33098 Paderborn Germany
| | - René Wilhelm
- Institute of Organic Chemistry, Clausthal University of Technology Leibnizstr. 6 38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
18
|
Immobilized Pd on Eggshell Membrane: A powerful and recyclable catalyst for Suzuki and Heck cross-coupling reactions in water. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Ziarati A, Badiei A, Luque R, Dadras M, Burgi T. Visible Light CO 2 Reduction to CH 4 Using Hierarchical Yolk@shell TiO 2–xH x Modified with Plasmonic Au–Pd Nanoparticles. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2020; 8:3689-3696. [DOI: 10.1021/acssuschemeng.9b06751] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Affiliation(s)
- Abolfazl Ziarati
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614418, Iran
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614418, Iran
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Campus de Rabanales, Edificio Marie Curie, E-14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198 Moscow, Russia
| | - Massoud Dadras
- CSEM Centre Suisse d’Electronique et de and Microtecnique SA, Jaquet-Droz 1, Case Postal, 2002 Neuchâtel, Switzerland
| | - Thomas Burgi
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, 1211 Geneva 4, Switzerland
| |
Collapse
|
20
|
Ryu SH, Choi SJ, Seon JH, Jo B, Lee SM, Kim HJ, Ko YJ, Ko KC, Ahn TK, Son SU. Visible light-driven Suzuki–Miyaura reaction by self-supported Pd nanocatalysts in the formation of Stille coupling-based photoactive microporous organic polymers. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00997k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Stille coupling results in deposition of Pd NPs on microporous organic polymers, showing excellent photocatalytic performance.
Collapse
Affiliation(s)
- Sang Hyun Ryu
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Sung Jae Choi
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Ji Hui Seon
- Department of Chemistry Education
- Chonnam National University
- Gwangju 61186
- Korea
| | - Bonghyun Jo
- Department of Energy Science
- Sungkyunkwan University
- Suwon 16419
- Korea
| | | | - Hae Jin Kim
- Korea Basic Science Institute
- Daejeon 34133
- Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance
- National Center for Inter-University Research Facilities (NCIRF)
- Seoul National University
- Seoul 08826
- Korea
| | - Kyoung Chul Ko
- Department of Chemistry Education
- Chonnam National University
- Gwangju 61186
- Korea
| | - Tae Kyu Ahn
- Department of Energy Science
- Sungkyunkwan University
- Suwon 16419
- Korea
| | - Seung Uk Son
- Department of Chemistry
- Sungkyunkwan University
- Suwon 16419
- Korea
| |
Collapse
|
21
|
Liu B, Xu T, Li C, Bai J. An effective photothermal dual-responsive Pd 1Cu 4/Ce xO y catalyst for Suzuki–Miyaura coupling reactions under mild conditions. NEW J CHEM 2020. [DOI: 10.1039/c9nj06195a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A Pd1Cu4/CexOy catalyst can efficiently catalyze Suzuki reactions under both heating and visible light irradiation conditions.
Collapse
Affiliation(s)
- Bo Liu
- Chemical Engineering College
- Inner Mongolia University of Technology
- Hohhot
- People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis
| | - Tong Xu
- Chemical Engineering College
- Inner Mongolia University of Technology
- Hohhot
- People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis
| | - Chunping Li
- Chemical Engineering College
- Inner Mongolia University of Technology
- Hohhot
- People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis
| | - Jie Bai
- Chemical Engineering College
- Inner Mongolia University of Technology
- Hohhot
- People's Republic of China
- Inner Mongolia Key Laboratory of Industrial Catalysis
| |
Collapse
|
22
|
Jahanshahi R, Khazaee A, Sobhani S, Sansano JM. g-C3N4/γ-Fe2O3/TiO2/Pd: a new magnetically separable photocatalyst for visible-light-driven fluoride-free Hiyama and Suzuki–Miyaura cross-coupling reactions at room temperature. NEW J CHEM 2020. [DOI: 10.1039/d0nj01599g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
g-C3N4/γ-Fe2O3/TiO2/Pd is developed as a new magnetically separable photocatalyst for efficient fluoride-free Hiyama and Suzuki–Miyaura cross-coupling reactions at room temperature under visible light irradiation.
Collapse
Affiliation(s)
- Roya Jahanshahi
- Department of Chemistry
- College of Sciences
- University of Birjand
- Birjand
- Iran
| | - Asma Khazaee
- Department of Chemistry
- College of Sciences
- University of Birjand
- Birjand
- Iran
| | - Sara Sobhani
- Department of Chemistry
- College of Sciences
- University of Birjand
- Birjand
- Iran
| | - José Miguel Sansano
- Departamento de Química Orgánica
- Facultad de Ciencias
- Centro de Innovación en Química Avanzada (ORFEO-CINQA) and Instituto de Síntesis Orgánica (ISO)
- Universidad de Alicante
- 03080-Alicante
| |
Collapse
|
23
|
Mohammadi Ziarani G, Mofatehnia P, Mohajer F, Badiei A. Rational design of yolk–shell nanostructures for drug delivery. RSC Adv 2020; 10:30094-30109. [PMID: 35518231 PMCID: PMC9059143 DOI: 10.1039/d0ra03611k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/28/2020] [Indexed: 11/21/2022] Open
Abstract
The recent progress in yolk–shell nanoparticles (YSNPs) as a new class of hollow nanostructures applied for drug delivery.
Collapse
Affiliation(s)
| | - Parisa Mofatehnia
- Department of Chemistry
- Faculty of Physics and Chemistry
- University of Alzahra
- Tehran
- Iran
| | - Fatemeh Mohajer
- Department of Chemistry
- Faculty of Physics and Chemistry
- University of Alzahra
- Tehran
- Iran
| | - Alireza Badiei
- School of Chemistry
- College of Science
- University of Tehran
- Tehran
- Iran
| |
Collapse
|