1
|
Wang Y, Tong C, Liu Q, Han R, Liu C. Intergrowth Zeolites, Synthesis, Characterization, and Catalysis. Chem Rev 2023; 123:11664-11721. [PMID: 37707958 DOI: 10.1021/acs.chemrev.3c00373] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Microporous zeolites that can act as heterogeneous catalysts have continued to attract a great deal of academic and industrial interest, but current progress in their synthesis and application is restricted to single-phase zeolites, severely underestimating the potential of intergrowth frameworks. Compared with single-phase zeolites, intergrowth zeolites possess unique properties, such as different diffusion pathways and molecular confinement, or special crystalline pore environments for binding metal active sites. This review first focuses on the structural features and synthetic details of all the intergrowth zeolites, especially providing some insightful discussion of several potential frameworks. Subsequently, characterization methods for intergrowth zeolites are introduced, and highlighting fundamental features of these crystals. Then, the applications of intergrowth zeolites in several of the most active areas of catalysis are presented, including selective catalytic reduction of NOx by ammonia (NH3-SCR), methanol to olefins (MTO), petrochemicals and refining, fine chemicals production, and biomass conversion on Beta, and the relationship between structure and catalytic activity was profiled from the perspective of intergrowth grain boundary structure. Finally, the synthesis, characterization, and catalysis of intergrowth zeolites are summarized in a comprehensive discussion, and a brief outlook on the current challenges and future directions of intergrowth zeolites is indicated.
Collapse
Affiliation(s)
- Yanhua Wang
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Chengzheng Tong
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Qingling Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Rui Han
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| | - Caixia Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Liu W, Li J, Yu Q, Chen H, Liu W, Yang Z, Liu X, Xu Z, Xu S, Zhu X, Li X. Construction of a One-Dimensional Al-Rich ZSM-48 Zeolite with a Hollow Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52025-52034. [PMID: 36349940 DOI: 10.1021/acsami.2c16346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Diffusion limitation and acid deficiency are two main challenges that the ZSM-48 zeolite faces in practical application. To date, there have been few effective strategies to solve both problems, simultaneously. Also, it is also a challenge to construct a hollow structure in a one-dimensional (1D) zeolite. Herein, an Al-rich ZSM-48 zeolite with a hollow structure is constructed through an alumination-recrystallization strategy, thereby solving the problems related to diffusion and acidity simultaneously. The hollowness and enrichment of aluminum can be controlled by judiciously matching the desilication and recrystallization. The silica to alumina ratio (SAR) of the ZSM-48 zeolite can be tuned from 130 to 45, which breaks the SAR limitation of conventional synthesis. On the basis of the different characterization results, the whole crystallization can be divided into two stages: rapid desilication-alumination and time-consuming recrystallization. In the selective desilication-recrystallization process, the preferential special distribution of the organic template leads to the formation of a hollow structure and the healing of mesopores at the outer shell, as evidenced by structured illumination microscopy images. Due to the enhancement in diffusion ability and acid density, the obtained hollow Al-rich ZSM-48 zeolite exhibits excellent catalytic stability and high p-xylene yield (∼26%) in the m-xylene isomerization reaction (WHSV = 18 h-1), indicating its strong industrial application potential.
Collapse
Affiliation(s)
- Wen Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Qiang Yu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Chen
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjuan Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhiqiang Yang
- Applied Sciences, BP Innovation & Engineering, Energy Innovation Laboratory, BP Office (Dalian Institute of Chemical Physics), 457 Zhongshan Road, Dalian 116023, China
| | - Xuebin Liu
- Applied Sciences, BP Innovation & Engineering, Energy Innovation Laboratory, BP Office (Dalian Institute of Chemical Physics), 457 Zhongshan Road, Dalian 116023, China
| | - Zhaochao Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shutao Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiangxue Zhu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiujie Li
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
3
|
Ma D, Fu W, Liu C, Liang J, Yuan Z, Tao W, Wang Z, Yang W. Syntheses of MTT-Type Zeolites with the Presence of Both Octyltrimethylammonium Chloride and SFE-Type Zeolite Seeds. ACS OMEGA 2021; 6:23598-23606. [PMID: 34549157 PMCID: PMC8444303 DOI: 10.1021/acsomega.1c03810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Structure-directing agents (SDAs) play important roles in directing the formation of specific zeolite frameworks. Mechanisms and working hypothesis were proposed for understanding how SDAs work during the crystallization of zeolites. The lately reported cooperative structure-directing effect based on the investigation into the synthetic system containing both seed and organic species is one of them and is believed to be effective for synthesizing zeolites which are difficult to access or with novel structures. However, more examples are still needed to support the thesis. Herein, we report for the first time the syntheses of MTT-type zeolites with the simultaneous presences of octyltrimethylammonium chloride (OTMAC) and SFE zeolite seeds in the borosilicate system. SFE borosilicate zeolites serve as exotic seeds for the crystallization of MTT-type zeolites and together with OTMAC play cooperative structure-directing roles. Besides, Al,B-MTT and heteroatom (Zr, V, and Fe)-incorporated MTT-type zeolites were directly synthesized with the introduction of metal sources into the borosilicate system. Physicochemical properties of the obtained MTT zeolites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N2 physisorption, NH3-TPD, 27Al NMR, 13C NMR, 11B NMR, UV-visible spectroscopy, and UV Raman spectroscopy. The herein-reported phenomenon provides an example to better understand the mechanism of zeolite crystallization, and the synthesized zeolites may act as promising catalytic materials in several organic reactions.
Collapse
Affiliation(s)
- Duozheng Ma
- School
of Chemical Engineering, East China University
of Science and Technology, Shanghai 200237, PR China
- State
Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical
Technology, Shanghai 201208, PR China
| | - Wenhua Fu
- State
Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical
Technology, Shanghai 201208, PR China
| | - Chuang Liu
- State
Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical
Technology, Shanghai 201208, PR China
| | - Jun Liang
- School
of Chemical Engineering, East China University
of Science and Technology, Shanghai 200237, PR China
- State
Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical
Technology, Shanghai 201208, PR China
| | - Zhiqing Yuan
- State
Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical
Technology, Shanghai 201208, PR China
| | - Weichuan Tao
- State
Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical
Technology, Shanghai 201208, PR China
| | - Zhendong Wang
- State
Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical
Technology, Shanghai 201208, PR China
| | - Weimin Yang
- School
of Chemical Engineering, East China University
of Science and Technology, Shanghai 200237, PR China
- State
Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical
Technology, Shanghai 201208, PR China
| |
Collapse
|
4
|
Zhang Q, Yu J, Corma A. Applications of Zeolites to C1 Chemistry: Recent Advances, Challenges, and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002927. [PMID: 32697378 DOI: 10.1002/adma.202002927] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Indexed: 05/21/2023]
Abstract
C1 chemistry, which is the catalytic transformation of C1 molecules including CO, CO2 , CH4 , CH3 OH, and HCOOH, plays an important role in providing energy and chemical supplies while meeting environmental requirements. Zeolites are highly efficient solid catalysts used in the chemical industry. The design and development of zeolite-based mono-, bi-, and multifunctional catalysts has led to a booming application of zeolite-based catalysts to C1 chemistry. Combining the advantages of zeolites and metallic catalytic species has promoted the catalytic production of various hydrocarbons (e.g., methane, light olefins, aromatics, and liquid fuels) and oxygenates (e.g., methanol, dimethyl ether, formic acid, and higher alcohols) from C1 molecules. The key zeolite descriptors that influence catalytic performance, such as framework topologies, nanoconfinement effects, Brønsted acidities, secondary-pore systems, particle sizes, extraframework cations and atoms, hydrophobicity and hydrophilicity, and proximity between acid and metallic sites are discussed to provide a deep understanding of the significance of zeolites to C1 chemistry. An outlook regarding challenges and opportunities for the conversion of C1 resources using zeolite-based catalysts to meet emerging energy and environmental demands is also presented.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, València, 46022, Spain
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
- International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, València, 46022, Spain
| |
Collapse
|