1
|
Feidenhans’l A, Regmi YN, Wei C, Xia D, Kibsgaard J, King LA. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem Rev 2024; 124:5617-5667. [PMID: 38661498 PMCID: PMC11082907 DOI: 10.1021/acs.chemrev.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
The quest to identify precious metal free hydrogen evolution reaction catalysts has received unprecedented attention in the past decade. In this Review, we focus our attention to recent developments in precious metal free hydrogen evolution reactions in acidic and alkaline electrolyte owing to their relevance to commercial and near-commercial low-temperature electrolyzers. We provide a detailed review and critical analysis of catalyst activity and stability performance measurements and metrics commonly deployed in the literature, as well as review best practices for experimental measurements (both in half-cell three-electrode configurations and in two-electrode device testing). In particular, we discuss the transition from laboratory-scale hydrogen evolution reaction (HER) catalyst measurements to those in single cells, which is a critical aspect crucial for scaling up from laboratory to industrial settings but often overlooked. Furthermore, we review the numerous catalyst design strategies deployed across the precious metal free HER literature. Subsequently, we showcase some of the most commonly investigated families of precious metal free HER catalysts; molybdenum disulfide-based, transition metal phosphides, and transition metal carbides for acidic electrolyte; nickel molybdenum and transition metal phosphides for alkaline. This includes a comprehensive analysis comparing the HER activity between several families of materials highlighting the recent stagnation with regards to enhancing the intrinsic activity of precious metal free hydrogen evolution reaction catalysts. Finally, we summarize future directions and provide recommendations for the field in this area of electrocatalysis.
Collapse
Affiliation(s)
| | - Yagya N. Regmi
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Chao Wei
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Dong Xia
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| | - Jakob Kibsgaard
- Department
of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Laurie A. King
- Faculty
of Science and Engineering, Manchester Metropolitan
University, Manchester M1 5GD, U.K.
- Manchester
Fuel Cell Innovation Centre, Manchester
Metropolitan University, Manchester M1 5GD, U.K.
| |
Collapse
|
2
|
Luo F, Pan S, Xie Y, Li C, Yu Y, Bao H, Yang Z. Hydrazine-Assisted Acidic Water Splitting Driven by Iridium Single Atoms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305058. [PMID: 37775308 PMCID: PMC10646228 DOI: 10.1002/advs.202305058] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Indexed: 10/01/2023]
Abstract
Water splitting, an efficient technology to produce purified hydrogen, normally requires high cell voltage (>1.5 V), which restricts the application of single atoms electrocatalyst in water oxidation due to the inferior stability, especially in acidic environment. Substitution of anodic oxygen evolution reaction (OER) with hydrazine oxidation reaction (HzOR) effectually reduces the overall voltage. In this work, the utilization of iridium single atom (Ir-SA/NC) as robust hydrogen evolution reaction (HER) and HzOR electrocatalyst in 0.5 m H2 SO4 electrolyte is reported. Mass activity of Ir-SA/NC is as high as 37.02 A mgIr -1 at overpotential of 50 mV in HER catalysis, boosted by 127-time than Pt/C. Besides, Ir-SA/NC requires only 0.39 V versus RHE to attain 10 mA cm-2 in HzOR catalysis, dramatically lower than OER (1.5 V versus RHE); importantly, a superior stability is achieved in HzOR. Moreover, the mass activity at 0.5 V versus RHE is enhanced by 83-fold than Pt/C. The in situ Raman spectroscopy investigation suggests the HzOR pathway follows *N2 H4 →*2NH2 →*2NH→2N→*N2 →N2 for Ir-SA/NC. The hydrazine assisted water splitting demands only 0.39 V to drive, 1.25 V lower than acidic water splitting.
Collapse
Affiliation(s)
- Fang Luo
- College of Materials Science and EngineeringState Key Laboratory of New Textile Materials & Advanced Processing TechnologyWuhan Textile UniversityWuhan430200P. R. China
| | - Shuyuan Pan
- Sustainable Energy LaboratoryFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan388 Lumo RDWuhan430074P. R. China
| | - Yuhua Xie
- Sustainable Energy LaboratoryFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan388 Lumo RDWuhan430074P. R. China
| | - Chen Li
- College of Materials Science and EngineeringState Key Laboratory of New Textile Materials & Advanced Processing TechnologyWuhan Textile UniversityWuhan430200P. R. China
| | - Yingjie Yu
- College of Materials Science and EngineeringState Key Laboratory of New Textile Materials & Advanced Processing TechnologyWuhan Textile UniversityWuhan430200P. R. China
| | - Haifeng Bao
- College of Materials Science and EngineeringState Key Laboratory of New Textile Materials & Advanced Processing TechnologyWuhan Textile UniversityWuhan430200P. R. China
| | - Zehui Yang
- Sustainable Energy LaboratoryFaculty of Materials Science and ChemistryChina University of Geosciences Wuhan388 Lumo RDWuhan430074P. R. China
| |
Collapse
|
3
|
Solati N, Karakaya C, Kaya S. Advancing the Understanding of the Structure–Activity–Durability Relation of 2D MoS 2 for the Hydrogen Evolution Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Navid Solati
- Materials Science and Engineering, Koç University, 34450 Istanbul, Turkey
- Koç University Tüpraş Energy Center (KUTEM), 34450 Istanbul, Turkey
| | - Cüneyt Karakaya
- Materials Science and Engineering, Koç University, 34450 Istanbul, Turkey
- Koç University Tüpraş Energy Center (KUTEM), 34450 Istanbul, Turkey
- Turkish Petroleum Refineries Co. (Tüpraş) R&D, Kocaeli 41790, Turkey
| | - Sarp Kaya
- Koç University Tüpraş Energy Center (KUTEM), 34450 Istanbul, Turkey
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
4
|
|
5
|
Zhao ZY, Liu QL. Rational Design of a Two-Dimensional Janus CuFeO 2+δ Single Layer as a Photocatalyst and Photoelectrode. J Phys Chem Lett 2021; 12:10863-10873. [PMID: 34730358 DOI: 10.1021/acs.jpclett.1c02627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The exfoliation of 2D nanomaterials from 3D multimetal oxides with a stable structure is a great challenge. Herein, a delafossite CuFeO2+δ nanosheet becomes an open-layered structure by introducing excess oxygen so that the 2D Janus CuFeO2+δ single layer can be further obtained by aqueous ultrasonic exfoliation. The 2D Janus CuFeO2+δ single layer breaks the limitation of mirror symmetry, which is very beneficial to the effective separation of photogenerated electron-hole pairs. Serving as both a photoelectrode and a photocatalyst, the 2D Janus CuFeO2+δ single layer/few layer remarkably enhances the photocatalytic activity with long-term stability: the photocurrent density is increased by 2-fold, and the rate of H2 evolution is increased by 1.5-fold, in comparison with the counterpart of unexfoliated CuFeO2+δ nanosheets. This work demonstrates that 2D nanomaterials can be directly exfoliated from 3D nanomaterials by rational composition and microstructure design, which is helpful in promoting the development of bimetallic-oxide-ene (BMOene) as a novel functional material.
Collapse
Affiliation(s)
- Zong-Yan Zhao
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Qing-Lu Liu
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| |
Collapse
|
6
|
Zheng J, Sun X, Hu J, Wang S, Yao Z, Deng S, Pan X, Pan Z, Wang J. Symbolic Transformer Accelerating Machine Learning Screening of Hydrogen and Deuterium Evolution Reaction Catalysts in MA 2Z 4 Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50878-50891. [PMID: 34672634 DOI: 10.1021/acsami.1c13236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials have been developed into various catalysts with high performance, but employing them for developing highly stable and active nonprecious hydrogen evolution reaction (HER) catalysts still encounters many challenges. To this end, the machine learning (ML) screening of HER catalysts is accelerated by using genetic programming (GP) of symbolic transformers for various typical 2D MA2Z4 materials. The values of the Gibbs free energy of hydrogen adsorption (ΔGH*) are accurately and rapidly predicted via extreme gradient boosting regression by using only simple GP-processed elemental features, with a low predictive root-mean-square error of 0.14 eV. With the analysis of ML and density functional theory (DFT) methods, it is found that various electronic structural properties of metal atoms and the p-band center of surface atoms play a crucial role in regulating the HER performance. Based on these findings, NbSi2N4 and VSi2N4 are discovered to be active catalysts with thermodynamical and dynamical stability as ΔGH* approaches to zero (-0.041 and 0.024 eV). In addition, DFT calculations reveal that these catalysts also exhibit good deuterium evolution reaction (DER) performance. Overall, a multistep workflow is developed through ML models combined with DFT calculations for efficiently screening the potential HER and DER catalysts from 2D materials with the same crystal prototype, which is believed to have significant contribution to catalyst design and fabrication.
Collapse
Affiliation(s)
- Jingnan Zheng
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | | | | | - ShiBin Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Zihao Yao
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | - Shengwei Deng
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| | | | | | - Jianguo Wang
- Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
| |
Collapse
|
7
|
Cao Y. Roadmap and Direction toward High-Performance MoS 2 Hydrogen Evolution Catalysts. ACS NANO 2021; 15:11014-11039. [PMID: 34251805 DOI: 10.1021/acsnano.1c01879] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
MoS2 intrinsically show Pt-like hydrogen evolution reaction (HER) performance. Pristine MoS2 displayed low HER activity, which was caused by low quantities of catalytic sites and unsatisfactory conductivity. Then, phase engineering and S vacancy were developed as effective strategies to elevate the intrinsic HER performance. Heterojunctions and dopants were successful strategies to improve HER performance significantly. A couple of state-of-the-art MoS2 catalysts showed HER performance comparable to Pt. Applying multiple strategies in the same electrocatalyst was the key to furnish Pt-like HER performance. In this review, we summarize the available strategies to fabricate superior MoS2 HER catalysts and tag the important works. We analyze the well-defined strategies for fabricating a superior MoS2 electrocatalyst, propose complementary strategies which could help meet practical requirements, and help people design highly efficient MoS2 electrocatalysts. We also provide a brief perspective on assembling practical electrochemical systems by high-performance MoS2 electrocatalysts, apply MoS2 in other important electrocatalysis reactions, and develop high-performance two-dimensional (2D) dichalcogenide HER catalysts not limited to MoS2. This review will help researchers to obtain a better understanding of development of superior MoS2 HER electrocatalysts, providing directions for next-generation catalyst development.
Collapse
Affiliation(s)
- Yang Cao
- Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871 P. R. China
| |
Collapse
|
8
|
Guo C, Zhang T, Lu X, Wu CML. Rational Design and Effective Control of Gold-Based Bimetallic Electrocatalyst for Boosting CO 2 Reduction Reaction: A First-Principles Study. CHEMSUSCHEM 2021; 14:2731-2739. [PMID: 33931946 DOI: 10.1002/cssc.202100785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) is an effective strategy converting CO2 to value-added products. Au is regarded as an efficient catalyst for electrochemical reduction of CO2 to CO, and the introduction of Pd can tune CO2 RR properties due to its strong affinity to CO. Herein, Au-Pd bimetallic electrocatalysts with different metal ratio were firstly investigated on CO2 RR mechanism by using density functional theory. The Au monolayer over Pd substrate and single Pd atom on Au(111) were found to show better CO2 RR selectivity against hydrogen evolution reaction (HER). Based on this, various single-atom catalysts on Au(111) and core-shell models with top Au monolayer were designed to study their CO2 RR performance. The results indicated that Pt, Cu, and Rh substrates below Au monolayer could enhance the activity and selectivity for CO production compared to pure Au, in which the limiting potential reduced from -0.74 to -0.63, -0.69, and -0.71 V, respectively. The single Pd embedded on Au(111) could adjust the adsorption strength, which provided an effective site to receive and further reduce CO to CH3 OH and CH4 at a low limiting potential of -0.61 V, and also avoided catalyst poisoning due to the over-strengthened CO adsorption caused by high Pd proportion on the surface. In addition, the adsorption energy of COOH was observed as a better CO2 RR reactivity descriptor than the common CO adsorption when establishing scaling relationship, which could avoid the fitting error caused by intermediate physisorption of CO.
Collapse
Affiliation(s)
- Chen Guo
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Tian Zhang
- School of Materials Science and Engineering, China University of Petroleum Qingdao, Shandong, P. R. China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum Qingdao, Shandong, P. R. China
| | - Chi-Man Lawrence Wu
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
9
|
Feng Y, Zhang T, Zhang J, Fan H, He C, Song J. 3D 1T-MoS 2 /CoS 2 Heterostructure via Interface Engineering for Ultrafast Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002850. [PMID: 32686314 DOI: 10.1002/smll.202002850] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Metallic phase (1T) MoS2 has been regarded as an appealing material for hydrogen evolution reaction. In this work, a novel interface-induced strategy is reported to achieve stable and high-percentage 1T MoS2 through highly active 1T-MoS2 /CoS2 hetero-nanostructure. Herein, a large number of heterointerfaces can be obtained by interlinked 1T-MoS2 and CoS2 nanosheets in situ grown from the molybdate cobalt oxide nanorod under moderate conditions. Owing to the strong interaction between MoS2 and CoS2 , high-percentage of metallic-phase (1T) MoS2 of 76.6% can be achieved, leading to high electroconductivity and abundant active sites compared to 2H MoS2 . Furthermore, the interlinked MoS2 and CoS2 nanosheets can effectively disperse the nanosheets so as to enlarge the exposed active surface area. The near zero free energy of hydrogen adsorption at the heterointerface can also be achieved, indicating the fast kinetics and excellent catalytic activity induced by heterojunction. Therefore, when applied in hydrogen evolution reaction (HER), 1T-MoS2 /CoS2 heterostructure delivers low overpotential of 71 and 26 mV at the current density of 10 mA cm-2 with low Tafel slops of 60 and 43 mV dec-1 , respectively in alkaline and acidic conditions.
Collapse
Affiliation(s)
- Yangyang Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ting Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiahui Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hao Fan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cheng He
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jiangxuan Song
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|