1
|
Cosio M, Lee SR, Lai Q, Bhuvanesh N, Zhou J, Ozerov OV. Dimeric Rh Complexes Supported by a Bridging Phosphido/Bis(Phosphine) PPP Ligand. Organometallics 2024; 43:947-953. [PMID: 38756991 PMCID: PMC11094786 DOI: 10.1021/acs.organomet.3c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Rh complexes of a tridentate PPP ligand bearing 1,2-pyrrolediyl linkers have been prepared, including examples with the central P donor being either a phosphine or a phosphide. Three bimetallic Rh complexes containing the diamandoid Rh2P2 core (P = phosphido) have been structurally and spectroscopically characterized. The Rh-Rh interaction in these three dimers was examined by way of structural comparisons and DFT investigations.
Collapse
Affiliation(s)
- Mario
N. Cosio
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Samuel R. Lee
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Qingheng Lai
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Nattamai Bhuvanesh
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| | - Jia Zhou
- State
Key Laboratory of Urban Water Resource and Environment, School of
Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Oleg V. Ozerov
- Department
of Chemistry, Texas A&M University, College Station, Texas 77842, United States
| |
Collapse
|
2
|
Talavera M, Braun T. Versatile Reaction Pathways of 1,1,3,3,3-Pentafluoropropene at Rh(I) Complexes [Rh(E)(PEt 3 ) 3 ] (E=H, GePh 3 , Si(OEt) 3 , F, Cl): C-F versus C-H Bond Activation Steps. Chemistry 2021; 27:11926-11934. [PMID: 34118095 PMCID: PMC8456946 DOI: 10.1002/chem.202101508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 11/08/2022]
Abstract
The reaction of the rhodium(I) complexes [Rh(E)(PEt3)3] (E=GePh3 (1), H (6), F (7)) with 1,1,3,3,3‐pentafluoropropene afforded the defluorinative germylation products Z/E‐2‐(triphenylgermyl)‐1,3,3,3‐tetrafluoropropene and the fluorido complex [Rh(F)(CF3CHCF2)(PEt3)2] (2) together with the fluorophosphorane E‐(CF3)CH=CF(PFEt3). For [Rh(Si(OEt)3)(PEt3)3] (4) the coordination of the fluoroolefin was found to give [Rh{Si(OEt)3}(CF3CHCF2)(PEt3)2] (5). Two equivalents of complex 2 reacted further by C−F bond oxidative addition to yield [Rh(CF=CHCF3)(PEt3)2(μ‐F)3Rh(CF3CHCF2)(PEt3)] (9). The role of the fluorido ligand on the reactivity of complex 2 was assessed by comparison with the analogous chlorido complex. The use of complexes 1, 4 and 6 as catalysts for the derivatization of 1,1,3,3,3‐pentafluoropropene provided products, which were generated by hydrodefluorination, hydrometallation and germylation reactions.
Collapse
Affiliation(s)
- Maria Talavera
- Department of Chemistry, Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| | - Thomas Braun
- Department of Chemistry, Universität zu Berlin, Brook-Taylor Str. 2, 12489, Berlin, Germany
| |
Collapse
|
3
|
Chen C, Zhou L, Xie B, Wang Y, Ren L, Chen X, Cen B, Lv H, Wang H. Novel fast-acting pyrazole/pyridine-functionalized N-heterocyclic carbene silver complexes assembled with nanoparticles show enhanced safety and efficacy as anticancer therapeutics. Dalton Trans 2020; 49:2505-2516. [PMID: 32022055 DOI: 10.1039/c9dt04751d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we designed and synthesized four novel multi-nuclear silver complexes (1-4) coordinated with pyrazole- or pyridine-functionalized N-heterocyclic carbene (NHC) ligands. The crystal structures of the silver-NHC complexes were confirmed by X-ray diffraction analysis. In vitro assays showed that the silver-NHC complexes effectively killed a broad range of cancer cells after short-term drug exposure, serving as fast-acting cytotoxic agents. Of note, in cisplatin-resistant A549 cancer cells, the silver complexes were not cross-resistant with the clinically used cisplatin agent. Detailed mechanistic studies revealed that complex 2 triggered caspase-independent cell necrosis associated with intracellular reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) depletion. By exploiting a facile nano-assembly process, silver-NHC complexes 1, 2 and 4 were successfully integrated into the hydrophobic cores of amphiphilic matrices (DSPE-PEG2K), enabling systemic injection. The silver complex-loaded nanotherapeutics (1-NPs, 2-NPs, and 4-NPs) showed high safety margins with reduced systemic drug toxicities relative to cisplatin in animals. Furthermore, in a xenograft model of human colorectal cancer, the administration of the nanotherapeutics resulted in a marked inhibition of tumor progression.
Collapse
Affiliation(s)
- Chao Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China. and College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Liqian Zhou
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Yuchen Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Lulu Ren
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Xiaona Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Beini Cen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - He Lv
- College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| |
Collapse
|
4
|
Abril P, Del Río MP, López JA, Lledós A, Ciriano MA, Tejel C. Inner-Sphere Oxygen Activation Promoting Outer-Sphere Nucleophilic Attack on Olefins. Chemistry 2019; 25:14546-14554. [PMID: 31432579 DOI: 10.1002/chem.201903068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/19/2019] [Indexed: 01/18/2023]
Abstract
Alkoxylation and hydroxylation reactions of 1,5-cyclooctadiene (cod) in an iridium complex with alcohols and water promoted by the reduction of oxygen to hydrogen peroxide are described. The exo configuration of the OH/OR groups in the products agrees with nucleophilic attack at the external face of the olefin as the key step. The reactions also require the presence of a coordinating protic acid (such as picolinic acid (Hpic)) and involve the participation of a cationic diolefin iridium(III) complex, [Ir(cod)(pic)2 ]+ , which has been isolated. Independently, this cation is also involved in easy alkoxy group exchange reactions, which are very unusual for organic ethers. DFT studies on the mechanism of olefin alkoxylation mediated by oxygen show a low-energy proton-coupled electron-transfer step connecting a superoxide-iridium(II) complex with hydroperoxide-iridium(III) intermediates, rather than peroxide complexes. Accordingly, a more complex reaction, with up to four different products, occurred upon reacting the diolefin-peroxide iridium(III) complex with Hpic. Moreover, such hydroperoxide intermediates are the origin of the regio- and stereoselectivity of the hydroxylation/alkoxylation reactions. If this protocol is applied to the diolefin-rhodium(I) complex [Rh(pic)(cod)], free alkyl ethers ORC8 H11 (R=Me, Et) resulted, and the reaction is enantioselective if a chiral amino acid, such as l-proline, is used instead of Hpic.
Collapse
Affiliation(s)
- Paula Abril
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - M Pilar Del Río
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - José A López
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Agustí Lledós
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Miguel A Ciriano
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Cristina Tejel
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain
| |
Collapse
|