1
|
Su J, Gong Y, Batista ER, Lucena AF, Maria L, Marçalo J, Van Stipdonk MJ, Berden G, Martens J, Oomens J, Gibson JK, Yang P. Unusual Actinyl Complexes with a Redox-Active N,S-Donor Ligand. Inorg Chem 2023. [PMID: 37390399 DOI: 10.1021/acs.inorgchem.3c00990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Understanding the fundamental chemistry of soft N,S-donor ligands with actinides across the series is critical for separation science toward sustainable nuclear energy. This task is particularly challenging when the ligands are redox active. We herein report a series of actinyl complexes with a N,S-donor redox-active ligand that stabilizes different oxidation states across the actinide series. These complexes are isolated and characterized in the gas phase, along with high-level electronic structure studies. The redox-active N,S-donor ligand in the products, C5H4NS, acts as a monoanion in [UVIO2(C5H4NS-)]+ but as a neutral radical with unpaired electrons localized on the sulfur atom in [NpVO2(C5H4NS•)]+ and [PuVO2(C5H4NS•)]+, resulting in different oxidation states for uranium and transuranic elements. This is rationalized by considering the relative energy levels of actinyl(VI) 5f orbitals and S 3p lone pair orbitals of the C5H4NS- ligand and the cooperativity between An-N and An-S bonds that provides additional stability for the transuranic elements.
Collapse
Affiliation(s)
- Jing Su
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu Gong
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Enrique R Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ana F Lucena
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Leonor Maria
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Joaquim Marçalo
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Michael J Van Stipdonk
- Department of Chemistry and Biochemistry, Duquesne University, 600 Forbes Avenue, Pittsburgh, Pennsylvania 15282, United States
| | - Giel Berden
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
| | - Jonathan Martens
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Jos Oomens
- Radboud University, Institute for Molecules and Materials, FELIX Laboratory, Toernooiveld 7c, 6525ED Nijmegen, The Netherlands
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - John K Gibson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
2
|
|
3
|
Wen C, Shi Y, Lu Y, Xu Z, Liu H. 2Ch-2N Square Chalcogen Bonds between Pairs of Radicals: A Case Study of 1,2,3,5-Dichalcogenadiazolyl Derivatives. J Phys Chem A 2021; 125:8572-8580. [PMID: 34555901 DOI: 10.1021/acs.jpca.1c05439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Specific 2Ch-2N square interactions between pairs of heterocyclic rings have been the target of many recent crystallographic and computational studies. According to our search of the Cambridge Structural Database (CSD), a number of crystal structures of the derivatives of 1,2,3,5-dichalcogenadiazolyl (DChDA) radicals, which consist of 2Ch-2N square motifs in the dimer units, were extracted. On the basis of the CSD survey results, a set of dimeric complexes of DChDA-based radicals with diverse aryl substituents at the 4-position were selected to model such squares. Similar to that in conventional chalcogen bonds, 2Ch-2N square interactions become stronger as the atomic size of chalcogens increases. Both the orbital term and electrostatics contribute significantly to the attraction of these interactions, while the dispersion contribution is small but unneglectable. Some five-membered aryl substituents, such as imidazole, thiazole, and oxazole, produce markedly enhanced square interactions, leading to a pronounced influence on the distribution of spin populations on DChDA rings.
Collapse
Affiliation(s)
- Congtao Wen
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulong Shi
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yunxiang Lu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Wang P, Saber MR, VanNatta PE, Yap GPA, Popescu CV, Scarborough CC, Kieber-Emmons MT, Dunbar KR, Riordan CG. Molecular and Electronic Structures and Single-Molecule Magnet Behavior of Tris(thioether)-Iron Complexes Containing Redox-Active α-Diimine Ligands. Inorg Chem 2021; 60:6480-6491. [PMID: 33840189 DOI: 10.1021/acs.inorgchem.1c00214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incorporating radical ligands into metal complexes is one of the emerging trends in the design of single-molecule magnets (SMMs). While significant effort has been expended to generate multinuclear transition metal-based SMMs with bridging radical ligands, less attention has been paid to mononuclear transition metal-radical SMMs. Herein, we describe the first α-diiminato radical-containing mononuclear transition metal SMM, namely, [κ2-PhTttBu]Fe(AdNCHCHNAd) (1), and its analogue [κ2-PhTttBu]Fe(CyNCHCHNCy) (2) (PhTttBu = phenyltris(tert-butylthiomethyl)borate, Ad = adamantyl, and Cy = cyclohexyl). 1 and 2 feature nearly identical geometric and electronic structures, as shown by X-ray crystallography and electronic absorption spectroscopy. A more detailed description of the electronic structure of 1 was obtained through EPR and Mössbauer spectroscopies, SQUID magnetometry, and DFT, TD-DFT, and CAS calculations. 1 and 2 are best described as high-spin iron(II) complexes with antiferromagnetically coupled α-diiminato radical ligands. A strong magnetic exchange coupling between the iron(II) ion and the ligand radical was confirmed in 1, with an estimated coupling constant J < -250 cm-1 (J = -657 cm-1, DFT). Calibrated CAS calculations revealed that the ground-state Fe(II)-α-diiminato radical configuration has significant ionic contributions, which are weighted specifically toward the Fe(I)-neutral α-diimine species. Experimental data and theoretical calculations also suggest that 1 possesses an easy-axis anisotropy, with an axial zero-field splitting parameter D in the range from -4 to-1 cm-1. Finally, dynamic magnetic studies show that 1 exhibits slow magnetic relaxation behavior with an energy barrier close to the theoretical maximum, 2|D|. These results demonstrate that incorporating strongly coupled α-diiminato radicals into mononuclear transition metal complexes can be an effective strategy to prepare SMMs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Mohamed R Saber
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States.,Department of Chemistry, Fayoum University, Fayoum 63514, Egypt
| | - Peter E VanNatta
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112-0850, United States
| | - Glenn P A Yap
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Codrina V Popescu
- Department of Chemistry, University of Saint Thomas, 2115 Summit Avenue, Saint Paul, Minnesota 55105, United States
| | - Christopher C Scarborough
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States.,Syngenta Crop Protection AG, Schaffhauserstrasse, CH-4332 Stein, Switzerland
| | | | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States
| | - Charles G Riordan
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
5
|
Pajuelo-Corral O, Zabala-Lekuona A, San Sebastian E, Rodríguez-Diéguez A, García JA, Lezama L, Colacio E, Seco JM, Cepeda J. Modulating Magnetic and Photoluminescence Properties in 2-Aminonicotinate-Based Bifunctional Coordination Polymers by Merging 3d Metal Ions. Chemistry 2020; 26:13484-13498. [PMID: 32668065 DOI: 10.1002/chem.202002755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/13/2020] [Indexed: 12/23/2022]
Abstract
Herein, the synthesis and study of bifunctional coordination polymers (CPs) with both magnetic and photoluminescence properties, derived from a heterometallic environment, are reported. As a starting point, three isostructural monometallic CPs with the formula [M(μ-2ani)2 ]n (MII =Mn (1Mn ), Co (3Co ) and Ni (4Ni ); 2ani=2-aminonicotinate), crystallise as chiral 2D-layered structures stacked by means of supramolecular interactions. These compounds show high thermal stability in the solid state (above 350 °C), despite which, in aqueous solution, compound 1Mn is shown to partially transform into a novel 1D chain CP with the formula [Mn(2ani)2 (μ-H2 O)2 ]n (2Mn ). A study of the direct current (dc) magnetic properties of 1Mn , 3Co and 4Ni reveals a spin-canted structure derived from antisymmetric antiferromagnetic weak exchanges along the chiral network (as confirmed by DFT calculations) and magnetic anisotropy of the ions, in such a way that long-range ordering is observed with variable magnitude for the spin carriers. Moreover, compounds 3Co and 4Ni show no frequency-dependent alternating current (ac) susceptibility curves under zero dc field; this is characteristic behaviour of a glassy state that may be partially supressed for 3Co by applying an external dc field. To overcome long-range magnetic ordering, CoII ions are diluted in a diamagnetic ZnII -based matrix, which enables single-molecule magnet behaviour. Interestingly, this strategy allows a bifunctional Cox Zn1-x 2ani material, which is imbued with a strong photoluminescent emitting capacity, as characterised by an intense blue light followed by a green afterglow, to be obtained.
Collapse
Affiliation(s)
- Oier Pajuelo-Corral
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Andoni Zabala-Lekuona
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Eider San Sebastian
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Jose Angel García
- Departamento de Física Aplicada II, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940, Leioa, Spain
| | - Luis Lezama
- Departamento de Química Inorgánica, Facultad de Ciencia y Tecnología, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940, Leioa, Spain
| | - Enrique Colacio
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, 18071, Granada, Spain
| | - Jose M Seco
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| | - Javier Cepeda
- Departamento de Química Aplicada, Facultad de Química, Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 20018, Donostia, Spain
| |
Collapse
|
6
|
Leckie D, Stephaniuk NT, Arauzo A, Campo J, Rawson JM. Exploring through-bond and through-space magnetic communication in 1,3,2-dithiazolyl radical complexes. Chem Commun (Camb) 2019; 55:9849-9852. [DOI: 10.1039/c9cc04271g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Coordination of the dithiazolyl radical MBDTA leads to strong intramolecular metal–radical magnetic exchange but the strength of the intermolecular exchange coupling is strongly dependent on molecular packing.
Collapse
Affiliation(s)
- Dominique Leckie
- Dept of Chemistry & Biochemistry
- The University of Windsor
- Windsor
- Canada
| | | | - Ana Arauzo
- Departamento de Física de la Materia Condensada
- Facultad de Ciencias, and Instituto de Ciencia de Materiales de Aragon
- CSIC-Universidad de Zaragoza
- E-50009 Zaragoza
- Spain
| | - Javier Campo
- Departamento de Física de la Materia Condensada
- Facultad de Ciencias, and Instituto de Ciencia de Materiales de Aragon
- CSIC-Universidad de Zaragoza
- E-50009 Zaragoza
- Spain
| | - Jeremy M. Rawson
- Dept of Chemistry & Biochemistry
- The University of Windsor
- Windsor
- Canada
| |
Collapse
|