1
|
Akhtar M, Ullah Khan S, Mustafa G, Ahmad M, Ahamad T. A Novel BiOBr/CAU-17 Composite with Enhanced Photo-Catalytic Performance for Dye Degradation and Removal of Tetracycline Antibiotic Under Visible Light. ChemistryOpen 2024:e202400195. [PMID: 39441000 DOI: 10.1002/open.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/22/2024] [Indexed: 10/25/2024] Open
Abstract
In order to improve the low specific surface area and high recombinant light generation carriers of BiOBr, loading BiOBr onto suitable Metal Organic Frameworks (MOFs) is an effective strategy to unleash its efficient visible light response and intrinsic catalytic activity. In this study, using classic MOF CAU-17 as a precursor, using a straightforward co-precipitation technique, four BiOBr/CAU-17 composites with distinct MOF contents values BCAU-1, BCAU-2, BC, AU-3, and BCAU-4 were created, and their photo-catalytic characteristics were examined. The BCAU-2 composite exhibited much higher photo-catalytic degradation efficiency for Rhodamine B (RhB) and Tetracycline (TC) than the pristine materials, counter compositions, and early reported materials. XRD, SEM, TEM, XPS, and EDX results revealed the strong synergistic photo-catalytic effect of BiOBr and CAU-17. The photocatalytic degradation of TC was significantly enhanced by the BiOBr bimetal modification, with the 2 wt.% BiOBr/CAU-17 nanocomposite achieving an 87.2 % degradation of TC and 82 % Total Organic Carbon (TOC) removal within 60 min. The high photo-degradation efficiency of BCAU-2 composite should be attributed to the efficient transfer of photo-generated carriers at interfaces and the synergistic effect between BiOBr/CAU-17. Furthermore, the experiments on the capture of the active species proved that the main active free radicals involved in the degradation of RhB and TC are attributed to the photo-induced holes h+ and ⋅ O2 - under visible light. The catalyst's efficacy is corroborated by the outcomes of photoluminescence spectroscopy and photo current response. This study offers a new understanding for the design of green synthesis schemes for photo-catalytic dye degradation and removal of certain antibiotics from the aquatic environment.
Collapse
Affiliation(s)
- Mansoor Akhtar
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Shifa Ullah Khan
- The Institute of Chemistry, Faculty of Science, University of Okara, Renala Campus, 56100, Punjab, Pakistan
| | - Ghulam Mustafa
- The Institute of Chemistry, Faculty of Science, University of Okara, Renala Campus, 56100, Punjab, Pakistan
| | - Muhammad Ahmad
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, 518060, P. R. China
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Nordin NA, Mohamed MA, Salehmin MNI, Mohd Yusoff SF. Photocatalytic active metal–organic framework and its derivatives for solar-driven environmental remediation and renewable energy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
3
|
Liu S, Zou Q, Ma Y, Chi D, Chen R, Fang H, Hu W, Zhang K, Chen LF. Metal-organic frameworks derived TiO2/carbon nitride heterojunction photocatalyst with efficient catalytic performance under visible light. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
4
|
Three new one-, two-, and three-dimensional complexes based on semi-rigid tricarboxylate ligand: Syntheses, structures and properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Li X, Li N, Gao Y, Ge L. Design and applications of hollow-structured nanomaterials for photocatalytic H2 evolution and CO2 reduction. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63863-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Rajak S, Vu NN, Kaur P, Duong A, Nguyen-Tri P. Recent progress on the design and development of diaminotriazine based molecular catalysts for light-driven hydrogen production. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Li YL, Wang XJ, Hao YJ, Zhao J, Liu Y, Mu HY, Li FT. Rational design of stratified material with spatially separated catalytic sites as an efficient overall water-splitting photocatalyst. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63706-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Liu S, Zhang C, Sun Y, Chen Q, He L, Zhang K, Zhang J, Liu B, Chen LF. Design of metal-organic framework-based photocatalysts for hydrogen generation. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213266] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
9
|
Chava RK, Son N, Kim YS, Kang M. Controlled Growth and Bandstructure Properties of One Dimensional Cadmium Sulfide Nanorods for Visible Photocatalytic Hydrogen Evolution Reaction. NANOMATERIALS 2020; 10:nano10040619. [PMID: 32230877 PMCID: PMC7221677 DOI: 10.3390/nano10040619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/06/2023]
Abstract
One dimensional (1D) metal sulfide nanostructures are one of the most promising materials for photocatalytic water splitting reactions to produce hydrogen (H2). However, tuning the nanostructural, optical, electrical and chemical properties of metal sulfides is a challenging task for the fabrication of highly efficient photocatalysts. Herein, 1D CdS nanorods (NRs) were synthesized by a facile and low-cost solvothermal method, in which reaction time played a significant role for increasing the length of CdS NRs from 100 nm to several micrometers. It is confirmed that as the length of CdS NR increases, the visible photocatalytic H2 evolution activity also increases and the CdS NR sample obtained at 18 hr. reaction time exhibited the highest H2 evolution activity of 206.07 μmol.g−1.h−1. The higher H2 evolution activity is explained by the improved optical absorption properties, enhanced electronic bandstructure and decreased electron-hole recombination rate.
Collapse
Affiliation(s)
- Rama Krishna Chava
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea;
- Correspondence: or (R.K.C.); (M.K.)
| | - Namgyu Son
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea;
| | - Yang Soo Kim
- Korea Basic Science Institute, Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea;
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Korea;
- Correspondence: or (R.K.C.); (M.K.)
| |
Collapse
|