1
|
Dadmehr P, Bikas R, Lis T. Chemical CO 2 fixation using a cyanido bridged heterometallic Zn(II)-Mn(II) 2D coordination polymer. Dalton Trans 2024; 53:15246-15257. [PMID: 39221996 DOI: 10.1039/d4dt01630k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new cyanido bridged Zn(II)-Mn(II) mixed-metal coordination polymer, {[Zn(μ-L)(μ-CN)2Mn0.5]·(CH3OH)}n (1), has been synthesized by the reaction of Zn(CN)2, Mn(II) salts and a hydrazone ligand (HL = (E)-N'-(phenyl(pyridin-2-yl)methylene)isonicotinohydrazide) in methanol. Compound 1 was characterized using various analytical methods (including elemental analysis, photoluminescence, FT-IR, XRD, SEM, and EDX analyses, and TGA), and its structure was determined by X-ray analysis. These analyses confirmed the formation of a mixed metal Zn(II)-Mn(II) coordination polymer containing both cyanide and hydrazone bridging ligands. This mixed metal coordination polymer exhibits interesting emission spectra by having several emissions via excitation at 230, 270, 375 and 385 nm. The catalytic activity of compound 1 in chemical CO2 fixation was investigated in the presence of epoxides, and the effects of various parameters on its catalytic performance were evaluated. The results of catalytic studies show that compound 1 can efficiently catalyze the chemical CO2 fixation reaction under mild conditions. The amount of co-catalyst, temperature of the reaction, nature of the solvent and also the substituent connected to the epoxide ring are some of the important parameters that have considerable effects on the catalytic activity of 1.
Collapse
Affiliation(s)
- Parvaneh Dadmehr
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran.
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran.
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland
| |
Collapse
|
2
|
Hui S, Saha PC, Guha S, Mahata P. Two-Dimensional Cu-Based MOF for Selective Staining of the Cellular Nucleus through Fluorescence Imaging and Selective Sorption of Dye Molecules in Aqueous Medium. Inorg Chem 2024; 63:13439-13449. [PMID: 38980190 DOI: 10.1021/acs.inorgchem.4c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A two-dimensional copper-based metal-organic framework, [Cu(C23H14O6)(C10H8N2)2]·H2O·DMSO, 1, was synthesized using pamoic acid (C23H16O6) and 4,4'-bipyridine (C10H8N2) as an organic ligand and Cu(II) as a metal ion. Single-crystal structure X-ray diffraction studies of the as-synthesized compound showed a two- dimensional structure with free hydroxyl groups. Upon excitation at 370 nm, the aqueous dispersion of [Cu(C23H14O6)(C10H8N2)2]·H2O·DMSO, 1, showed emission centered at 525 nm resulting from the intraligand energy transfer. Fluorescence microscopic experiments using a human epithelioid cervix carcinoma HeLa cell line were carried out, clearly showing that our compound selectively stained the cellular nucleus. To utilize the porous nature of [Cu(C23H14O6)(C10H8N2)2]·H2O·DMSO, 1, its dye sorption behavior in aqueous solution was determined, and a high affinity for methylene blue (MB) dye was confirmed. Our synthesized compound sorbed 88% MB dye with an initial concentration of 32 mg L-1, and its sorption capacity for MB was found to be 29.79 mg g-1. The possible mechanism of the dye sorption behavior was discussed in terms of the size and charge of dye molecules with respect to molecular-level interactions between the framework and the dye molecules.
Collapse
Affiliation(s)
- Sayani Hui
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | | | - Samit Guha
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Partha Mahata
- Department of Chemistry, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
3
|
Ma QC, Yue TC, Cao QW, Xie ZB, Dong QW, Wang DZ, Wang LL. Study on magnetic and dye adsorption properties of five coordination polymers based on triazole carboxylic acid ligands. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
4
|
Sun Y, Shi F, Wang B, Shi N, Ding Z, Xie L, Jiang J, Han M. Large-Scale Synthesis of Hierarchical Porous MOF Particles via a Gelation Process for High Areal Capacitance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101691. [PMID: 37242106 DOI: 10.3390/nano13101691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Metal-organic frameworks (MOFs) with hierarchical porous structures have been attracting intense interest currently due to their promising applications in catalysis, energy storage, drug delivery, and photocatalysis. Current fabrication methods usually employ template-assisted synthesis or thermal annealing at high temperatures. However, large-scale production of hierarchical porous metal-organic framework (MOF) particles with a simple procedure and mild condition is still a challenge, which hampers their application. To address this issue, we proposed a gelation-based production method and achieved hierarchical porous zeolitic imidazolate framework-67 (called HP-ZIF67-G thereafter) particles conveniently. This method is based on a metal-organic gelation process through a mechanically stimulated wet chemical reaction of metal ions and ligands. The interior of the gel system is composed of small nano and submicron ZIF-67 particles as well as the employed solvent. The relatively large pore size of the graded pore channels spontaneously formed during the growth process is conducive to the increased transfer rate of substances within the particles. It is proposed that the Brownian motion amplitude of the solute is greatly reduced in the gel state, which leads to porous defects inside the nanoparticles. Furthermore, HP-ZIF67-G nanoparticles interwoven with polyaniline (PANI) exhibited an exceptional electrochemical charge storage performance with an areal capacitance of 2500 mF cm-2, surpassing those of many MOF materials. This stimulates new studies on MOF-based gel systems to obtain hierarchical porous metal-organic frameworks which should benefit further applications in a wide spectrum of fields ranging from fundamental research to industrial applications.
Collapse
Affiliation(s)
- Yujie Sun
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Fei Shi
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Bo Wang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Naien Shi
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Zhen Ding
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Linghai Xie
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jiadong Jiang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| | - Min Han
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
5
|
Highly sensitive and rapid fluorescence detection of chlortetracycline in milk using a water- and pH-stable Zn (II) coordination polymer derived from zwitterionic and N-donor ligands. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Facile Synthesis of ZIF-67 for the Adsorption of Methyl Green from Wastewater: Integrating Molecular Models and Experimental Evidence to Comprehend the Removal Mechanism. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238385. [PMID: 36500484 PMCID: PMC9735897 DOI: 10.3390/molecules27238385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/13/2022] [Accepted: 11/23/2022] [Indexed: 12/02/2022]
Abstract
Organic dyes with enduring colors which are malodorous are a significant source of environmental deterioration due to their virulent effects on aquatic life and lethal carcinogenic effects on living organisms. In this study, the adsorption of methyl green (MG), a cationic dye, was achieved by using ZIF-67, which has been deemed an effective adsorbent for the removal of contaminants from wastewater. The characterization of ZIF-67 was done by FTIR, XRD, and SEM analysis. The adsorption mechanism and characteristics were investigated with the help of control batch experiments and theoretical studies. The systematical kinetic studies and isotherms were sanctioned with a pseudo-second-order model and a Langmuir model (R2 = 0.9951), confirming the chemisorption and monolayer interaction process, respectively. The maximum removal capacities of ZIF-67 for MG was 96% at pH = 11 and T = 25 °C. DFT calculations were done to predict the active sites in MG by molecular electrostatic potential (MEP). Furthermore, both Molecular dynamics and Monte Carlo simulations were also used to study the adsorption mechanism.
Collapse
|
7
|
Wang K, Yang L, Li L, Dong X, Wang Z, Tang H, Sun W, Ma Y. A water-stable zwitterionic Cd(II) coordination polymer as fluorescent sensor for the detection of oxo-anions and dimetridazole in milk. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
8
|
Wang K, Li L, Yang L, Guo J, Wang Z, Tang H, Ma Y. A water-stable zwitterionic Zn(II) coordination polymer as a luminescent sensor for the nitrofurazone antibiotic in milk. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Imtiaz A, Othman MHD, Jilani A, Khan IU, Kamaludin R, Iqbal J, Al-Sehemi AG. Challenges, Opportunities and Future Directions of Membrane Technology for Natural Gas Purification: A Critical Review. MEMBRANES 2022; 12:membranes12070646. [PMID: 35877848 PMCID: PMC9321681 DOI: 10.3390/membranes12070646] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 12/03/2022]
Abstract
Natural gas is an important and fast-growing energy resource in the world and its purification is important in order to reduce environmental hazards and to meet the required quality standards set down by notable pipeline transmission, as well as distribution companies. Therefore, membrane technology has received great attention as it is considered an attractive option for the purification of natural gas in order to remove impurities such as carbon dioxide (CO2) and hydrogen sulphide (H2S) to meet the usage and transportation requirements. It is also recognized as an appealing alternative to other natural gas purification technologies such as adsorption and cryogenic processes due to its low cost, low energy requirement, easy membrane fabrication process and less requirement for supervision. During the past few decades, membrane-based gas separation technology employing hollow fibers (HF) has emerged as a leading technology and underwent rapid growth. Moreover, hollow fiber (HF) membranes have many advantages including high specific surface area, fewer requirements for maintenance and pre-treatment. However, applications of hollow fiber membranes are sometimes restricted by problems related to their low tensile strength as they are likely to get damaged in high-pressure applications. In this context, braid reinforced hollow fiber membranes offer a solution to this problem and can enhance the mechanical strength and lifespan of hollow fiber membranes. The present review includes a discussion about different materials used to fabricate gas separation membranes such as inorganic, organic and mixed matrix membranes (MMM). This review also includes a discussion about braid reinforced hollow fiber (BRHF) membranes and their ability to be used in natural gas purification as they can tackle high feed pressure and aggressive feeds without getting damaged or broken. A BRHF membrane possesses high tensile strength as compared to a self-supported membrane and if there is good interfacial bonding between the braid and the separation layer, high tensile strength, i.e., upto 170Mpa can be achieved, and due to these factors, it is expected that BRHF membranes could give promising results when used for the purification of natural gas.
Collapse
Affiliation(s)
- Aniqa Imtiaz
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.I.); (R.K.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.I.); (R.K.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia
- Correspondence: (M.H.D.O.); or (A.J.)
| | - Asim Jilani
- Centre of Nanotechnology, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (M.H.D.O.); or (A.J.)
| | - Imran Ullah Khan
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochshule, Institute of Applied Sciences & Technology, Khanpur Road, Mang, Haripur 22650, Pakistan;
| | - Roziana Kamaludin
- Advanced Membrane Technology Research Centre, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.I.); (R.K.)
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia
| | - Javed Iqbal
- Centre of Nanotechnology, King Abdul-Aziz University, Jeddah 21589, Saudi Arabia;
| | - Abdullah G. Al-Sehemi
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
10
|
Counter-Intuitive Magneto-Water-Wetting Effect to CO 2 Adsorption at Room Temperature Using MgO/Mg(OH) 2 Nanocomposites. MATERIALS 2022; 15:ma15030983. [PMID: 35160943 PMCID: PMC8838735 DOI: 10.3390/ma15030983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023]
Abstract
MgO/Mg(OH)2-based materials have been intensively explored for CO2 adsorption due to their high theoretical but low practical CO2 capture efficiency. Our previous study on the effect of H2O wetting on CO2 adsorption in MgO/Mg(OH)2 nanostructures found that the presence of H2O molecules significantly increases (decreases) CO2 adsorption on the MgO (Mg(OH)2) surface. Furthermore, the magneto-water-wetting technique is used to improve the CO2 capture efficiency of various nanofluids by increasing the mass transfer efficiency of nanobeads. However, the influence of magneto-wetting to the CO2 adsorption at nanobead surfaces remains unknown. The effect of magneto-water-wetting on CO2 adsorption on MgO/Mg(OH)2 nanocomposites was investigated experimentally in this study. Contrary to popular belief, magneto-water-wetting does not always increase CO2 adsorption; in fact, if Mg(OH)2 dominates in the nanocomposite, it can actually decrease CO2 adsorption. As a result of our structural research, we hypothesized that the creation of a thin H2O layer between nanograins prevents CO2 from flowing through, hence slowing down CO2 adsorption during the carbon-hydration aging process. Finally, the magneto-water-wetting technique can be used to control the carbon-hydration process and uncover both novel insights and discoveries of CO2 capture from air at room temperature to guide the design and development of ferrofluid devices for biomedical and energy applications.
Collapse
|
11
|
Mamontova E, Salles F, Guari Y, Larionova J, Long J. Post-synthetic modification of Prussian blue type nanoparticles: tailoring the chemical and physical properties. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01068b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on recent advances in the post-synthetic modification of nano-sized Prussian blue and its analogues and compares them with the current strategies used in metal–organic frameworks to give future outlooks in this field.
Collapse
Affiliation(s)
| | - Fabrice Salles
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | - Yannick Guari
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Jérôme Long
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
12
|
Kirandeep, Kumar A, Sharma A, Sahoo SC, Zangrando E, Saini V, Kataria R, Kumar Mehta S. Metal organic framework as “turn-on” fluorescent sensor for Zr(IV) ions and selective adsorbent for organic dyes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
13
|
Thammakan S, Kuwamura N, Chiangraeng N, Nimmanpipug P, Konno T, Rujiwatra A. Highly disordering nanoporous frameworks of lanthanide-dicarboxylates for catalysis of CO2 cycloaddition with epoxides. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Uflyand IE, Zhinzhilo VA, Nikolaevskaya VO, Kharisov BI, González CMO, Kharissova OV. Recent strategies to improve MOF performance in solid phase extraction of organic dyes. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106387] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Patel U, Parmar B, Dadhania A, Suresh E. Zn(II)/Cd(II)-Based Metal-Organic Frameworks as Bifunctional Materials for Dye Scavenging and Catalysis of Fructose/Glucose to 5-Hydroxymethylfurfural. Inorg Chem 2021; 60:9181-9191. [PMID: 34096303 DOI: 10.1021/acs.inorgchem.1c01208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Functional neutral metal-organic frameworks (MOFs) {[M(5OH-IP)(L)]}n [M = Zn(II) for ADES-4; Cd(II) for ADES-5; 5OH-IP = 5-hydroxyisophthalate; L = (E)-N'-(pyridin-3-ylmethylene)nicotinohydrazide) have been synthesized by a diffusion/conventional reflux/mechanochemical method and characterized by various analytical techniques. Crystals were harvested by a diffusion method, and single-crystal X-ray diffraction (SXRD) analysis revealed that an adjacent [M2(COO)2]n ladder chain generates isostructural two-dimensional network motifs by doubly pillaring via L. The bulk-phase purity of ADES-4 and ADES-5 synthesized by a versatile synthetic approach has been recognized by the decent match of powder X-ray diffraction patterns with the simulated one. Both ADES-4 and ADES-5 showed selective adsorption of cationic dyes methylene blue (MB), methyl violet (MV), and rhodamine B (RhB) over anionic dye methyl orange (MO) from water with good uptake and rapid adsorption. Utilization of ADES-4 as a chromatographic column filler for adsorptive removal of individual cationic dyes as well as a mixture of dyes has been demonstrated from the aqueous phase. Interestingly, ADES-4 is reusable with good stability, and it showed a dye desorption phenomenon in methanol. The probable mechanism of cationic dye removal based on insight from structural information and plausible supramolecular interactions has also been explored. Both MOFs also showed efficient catalytic transformation of fructose and glucose into the high-value chemical intermediate 5-hydroxymethylfurfural of industrial significance.
Collapse
Affiliation(s)
- Unnati Patel
- Department of Chemical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India
| | - Bhavesh Parmar
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364 002, Gujarat, India
| | - Abhishek Dadhania
- Department of Chemical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388 421, Gujarat, India.,Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364 002, Gujarat, India
| | - Eringathodi Suresh
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364 002, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| |
Collapse
|
16
|
Liang S, Ge FY, Ren SS, Lei MY, Gao XJ, Zheng HG. Molecular engineering in a family of pillared-layered metal-organic frameworks for tuning gas adsorption behavior. Dalton Trans 2021; 50:7409-7416. [PMID: 33969851 DOI: 10.1039/d1dt00431j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, inspired by a water-assisted three-dimensional supramolecular structure 1, we use a mixed-ligand strategy to form a 3D pillared-layered matrix by the introduction of linear ligands to compete against the water molecules. The resulting analogue microporous MOFs of 2-H, 2-F and 2-N, decorated with different functional groups, similarly show the CO2 uptake. Thanks to the negligible N2 adsorption capacity, enhanced selective adsorption towards CO2 is achieved in compound 2-N. That is, we present here an alternative plan for the high CO2 selective adsorption performance. In addition, the structure stability and moderate affinity for CO2 of these microporous MOFs endow them with excellent reusability.
Collapse
Affiliation(s)
- Shuai Liang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Fa-Yuan Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Shuang-Shuang Ren
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Ming-Yuan Lei
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - Xiang-Jing Gao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| | - He-Gen Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
17
|
Wu YL, Yang RR, Yan YT, Yang GP, Liang HH, He LZ, Su XL, He XH, Ma ZS, Wang YY. Ultra-high adsorption selectivity and affinity for CO2 over CH4, and luminescent properties of three new solvents induced Zn(II)-based metal-organic frameworks (MOFs). J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Zhao JJ, Liu PY, Song LJ, Zhang L, Liu ZL, Wang YQ. A water stable Eu(III)-organic framework as a recyclable multi-responsive luminescent sensor for efficient detection of p-aminophenol in simulated urine, and Mn VII and Cr VI anions in aqueous solutions. Dalton Trans 2021; 50:5236-5243. [PMID: 33645597 DOI: 10.1039/d1dt00112d] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel 3D Eu(iii) metal-organic framework (Eu-MOF-1) formulated as [Eu(L)(H2O)(DMA)] (L = 2-(2-nitro-4-carboxylphenyl)terephthalic acid) has been successfully synthesized under solvothermal conditions and characterized by structural analyses. Eu-MOF-1 displays a new 3D framework containing EuIII ions, ligand L, and coordinated DMA molecules and water molecules. The fluorescence investigations indicate that Eu-MOF-1 emits bright red luminescence, and shows relatively high water stability and outstanding chemical stability under a relatively wide range of pH conditions. It is noteworthy that Eu-MOF-1 can quantitatively detect p-aminophenol (PAP) which is a metabolite of phenylamine in human urine. More significantly, Eu-MOF-1 is the first reported multi-responsive luminescent sensor for detecting the biomarker PAP, and MnVII and CrVI anions with high selectivity, sensitivity, recyclability and relatively low detection limits in aqueous solutions. Furthermore, the possible sensing mechanisms of Eu-MOF-1 for selective sensing have also been explored in detail. Eu-MOF-1 could be an ideal candidate as a multi-responsive luminescent sensor in biological and environmental areas.
Collapse
Affiliation(s)
- Jiao-Jiao Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| | - Peng-Yu Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| | - Li-Jun Song
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| | - Lei Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| | - Zhi-Liang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| | - Yan-Qin Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, Huhhot, 010021, China.
| |
Collapse
|
19
|
Ghosh S, Sarkar A, Chatterjee S, Nayek HP. Elucidation of selective adsorption study of Congo red using new Cadmium(II) metal-organic frameworks: Adsorption kinetics, isotherm and thermodynamics. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
20
|
Parmar B, Bisht KK, Rajput G, Suresh E. Recent advances in metal-organic frameworks as adsorbent materials for hazardous dye molecules. Dalton Trans 2021; 50:3083-3108. [PMID: 33565532 DOI: 10.1039/d0dt03824e] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Water is vital for the sustenance of all forms of life. Hence, water pollution is a universal crisis for the survival for all forms of life and a hurdle in sustainable development. Textile industry is one of the anthropogenic activities that severely pollutes water bodies. Inefficient dyeing processes result in thousands of tons of synthetic dyes being dumped in water bodies every year. Therefore, the efficient removal of synthetic dyes from wastewater has become a challenging research field. Owing to their tuneable structure-property aspects, metal-organic frameworks (MOFs) have emerged as promising adsorbents for the adsorptive removal of dyes from wastewater and textile effluents. In this perspective, we highlight recent studies involving the application of MOFs for the adsorptive removal of hazardous dye molecules. We also classify the developed MOFs into cationic, anionic, and neutral framework categories to comprehend their suitability for the removal of a given class of dyes.
Collapse
Affiliation(s)
- Bhavesh Parmar
- Analytical and Environmental Science Division and Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364 002, Gujarat, India.
| | | | | | | |
Collapse
|
21
|
Wang YX, Wang HM, Meng P, Song DX, Hou JJ, Zhang XM. An uncoordinated tertiary nitrogen based tricarboxylate calcium network with Lewis acid-base dual catalytic sites for cyanosilylation of aldehydes. Dalton Trans 2021; 50:1740-1745. [PMID: 33459307 DOI: 10.1039/d0dt03747h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and utilization of dual sites for synergistic catalysts has been recognised as an efficient method towards high-efficiency catalysis in the cyanosilylation of aldehydes, which gives key intermediates for the synthesis of a number of valuable natural and pharmaceutical compounds. However, most of the reported dual-site catalysts for this reaction were homogeneous, accompanied by potential deactivation through internal complexation of the dual sites. Herein, by the rational selection of an uncoordinated tertiary nitrogen based tricarboxylic ligand (tris[(4-carboxyl)-phenylduryl]amine, H3TCBPA), a new three-dimensional calcium-based metal-organic framework (MOF), Ca3(TCBPA)2(DMA)2(H2O)2 (1, where TCBPA = ionized tris[(4-carboxyl)-phenylduryl]amine and DMA = N,N-dimethylacetamide), possessing accessible dual catalytic sites, Lewis-basic N and Lewis-acidic Ca, has been designed and constructed by a one-pot solvothermal reaction. As expected, 1 is capable of dually and heterogeneously catalysing the cyanosilylation of aldehydes at room temperature, and can be reused for at least 6 runs with a maximum turnover number (TON) of 1301, which is superior to most reported cases. Additionally, 1 shows CO2 adsorption ability and conversion with epoxides, which is beneficial for the establishment of a sustainable society.
Collapse
Affiliation(s)
- Ying-Xia Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Hui-Min Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Pan Meng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Dong-Xia Song
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Juan-Juan Hou
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), Institute of Chemistry and Culture, School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, China.
| |
Collapse
|
22
|
Facile syntheses of ionic polymers for efficient catalytic conversion of CO2 to cyclic carbonates. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101301] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
23
|
Efficient and selective adsorption and separation of methylene blue (MB) from mixture of dyes in aqueous environment employing a Cu(II) based metal organic framework. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119787] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Jin F. Construction of a novel 2D Pb(II)-Organic framework: Syntheses, crystal structure, and property. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Muthukumaraswamy Rangaraj V, Wahab MA, Reddy KSK, Kakosimos G, Abdalla O, Favvas EP, Reinalda D, Geuzebroek F, Abdala A, Karanikolos GN. Metal Organic Framework - Based Mixed Matrix Membranes for Carbon Dioxide Separation: Recent Advances and Future Directions. Front Chem 2020; 8:534. [PMID: 32719772 PMCID: PMC7350925 DOI: 10.3389/fchem.2020.00534] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/25/2020] [Indexed: 12/13/2022] Open
Abstract
Gas separation and purification using polymeric membranes is a promising technology that constitutes an energy-efficient and eco-friendly process for large scale integration. However, pristine polymeric membranes typically suffer from the trade-off between permeability and selectivity represented by the Robeson's upper bound. Mixed matrix membranes (MMMs) synthesized by the addition of porous nano-fillers into polymer matrices, can enable a simultaneous increase in selectivity and permeability. Among the various porous fillers, metal-organic frameworks (MOFs) are recognized in recent days as a promising filler material for the fabrication of MMMs. In this article, we review representative examples of MMMs prepared by dispersion of MOFs into polymer matrices or by deposition on the surface of polymeric membranes. Addition of MOFs into other continuous phases, such as ionic liquids, are also included. CO2 separation from hydrocarbons, H2, N2, and the like is emphasized. Hybrid fillers based on composites of MOFs with other nanomaterials, e.g., of MOF/GO, MOF/CNTs, and functionalized MOFs, are also presented and discussed. Synergetic effects and the result of interactions between filler/matrix and filler/filler are reviewed, and the impact of filler and matrix types and compositions, filler loading, surface area, porosity, pore sizes, and surface functionalities on tuning permeability are discoursed. Finally, selectivity, thermal, chemical, and mechanical stability of the resulting MMMs are analyzed. The review concludes with a perspective of up-scaling of such systems for CO2 separation, including an overview of the most promising MMM systems.
Collapse
Affiliation(s)
| | - Mohammad A. Wahab
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
- School of Chemistry, Physics and Mechanical Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - K. Suresh Kumar Reddy
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - George Kakosimos
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Omnya Abdalla
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| | - Evangelos P. Favvas
- Institute of Nanoscience and Nanotechnology, National Centre of Scientific Research “Demokritos”, Attica, Greece
| | - Donald Reinalda
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Frank Geuzebroek
- ADNOC Gas Processing, Department of Research and Engineering R&D, Abu Dhabi, United Arab Emirates
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha, Qatar
| | - Georgios N. Karanikolos
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separations (CeCaS), Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and H2 (RICH), Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
26
|
Jin F. An excellently stable heterovalent copper–organic framework based on Cu4I4 and Cu(COO)2N2 SBUs: The catalytic performance for CO2 cycloaddition reaction and Knoevenagel condensation reaction. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Ploetz E, Zimpel A, Cauda V, Bauer D, Lamb DC, Haisch C, Zahler S, Vollmar AM, Wuttke S, Engelke H. Metal-Organic Framework Nanoparticles Induce Pyroptosis in Cells Controlled by the Extracellular pH. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907267. [PMID: 32182391 DOI: 10.1002/adfm.201909062] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 05/23/2023]
Abstract
Ion homeostasis is essential for cellular survival, and elevated concentrations of specific ions are used to start distinct forms of programmed cell death. However, investigating the influence of certain ions on cells in a controlled way has been hampered due to the tight regulation of ion import by cells. Here, it is shown that lipid-coated iron-based metal-organic framework nanoparticles are able to deliver and release high amounts of iron ions into cells. While high concentrations of iron often trigger ferroptosis, here, the released iron induces pyroptosis, a form of cell death involving the immune system. The iron release occurs only in slightly acidic extracellular environments restricting cell death to cells in acidic microenvironments and allowing for external control. The release mechanism is based on endocytosis facilitated by the lipid-coating followed by degradation of the nanoparticle in the lysosome via cysteine-mediated reduction, which is enhanced in slightly acidic extracellular environment. Thus, a new functionality of hybrid nanoparticles is demonstrated, which uses their nanoarchitecture to facilitate controlled ion delivery into cells. Based on the selectivity for acidic microenvironments, the described nanoparticles may also be used for immunotherapy: the nanoparticles may directly affect the primary tumor and the induced pyroptosis activates the immune system.
Collapse
Affiliation(s)
- Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
- Nanosystems Initiative Munich (NIM), LMU Munich, Munich, 81377, Germany
- Center for Integrated Protein Science Munich (CiPSM), LMU Munich, Munich, 81377, Germany
| | - Andreas Zimpel
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
| | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - David Bauer
- Department of Chemistry, TU Munich, Munich, 81377, Germany
| | - Don C Lamb
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
- Nanosystems Initiative Munich (NIM), LMU Munich, Munich, 81377, Germany
- Center for Integrated Protein Science Munich (CiPSM), LMU Munich, Munich, 81377, Germany
| | | | - Stefan Zahler
- Department of Pharmacy, LMU Munich, Munich, 81377, Germany
| | | | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Hanna Engelke
- Department of Chemistry and Center for NanoScience (CeNS), LMU Munich, Munich, 81377, Germany
| |
Collapse
|
28
|
Synthesis, crystal structure and catalytic property of a highly stable 3D Cu(II)-organic framework. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
A new Zn(II)-coordination polymer based on m-terphenyl pentacarboxylic acid ligand for photocatalytic methylene blue degradation and protective effect against Alzheimer’s disease by reducing the inflammatory response and oxidative stress in the nerve cells. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
30
|
Construction of a heterometallic organic framework based on cuprous-halide clusters and lanthanide clusters with CO2 storage and transformation. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107796] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Peng M, Hong C, Huang Y, Cheng P, Yuan H. Effect of metal oxide composite method on catalytic oxidation performance of aerogel supported Pd catalysts in oxidative carbonylation. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Ganina OG, Bondarenko GN, Isaeva VI, Kustov LM, Beletskaya IP. Cu-MOF-Catalyzed Carboxylation of Alkynes and Epoxides. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428019120017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Kharwar AK, Konar S. Exchange coupled Co(ii) based layered and porous metal-organic frameworks: structural diversity, gas adsorption, and magnetic properties. Dalton Trans 2020; 49:4012-4021. [PMID: 32154532 DOI: 10.1039/d0dt00211a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four new Co(ii) based metal-organic frameworks (MOFs) ({[Co3(L)(TDCA)3(DMF)2]n·2nCH3CN}) (1), ({[Co3(L)2(BDCA)3]n·2nCH3CN}) (2), {[Co2(L)2(CA)2]n·4nCH3CN} (3) and {[Co2(L)(OBBA)2]n·3nCH3CN} (4) are synthesized, where L is [4'-(4-methoxyphenyl)-4,2':6',4''-terpyridine], a V-shaped flexible neutral spacer, and the four dicarboxylates are TDCA = thiophene 2,5-dicarboxylic acid, BDCA = benzene 1,4-dicarboxylic acid, CA = (1R,3S)-(+)-camphoric acid and OBBA = 4,4'-oxybisbenzoic acid. Structural analysis reveals that 1 and 2 are two dimensional (2D) layered structures having interesting sql and hxl topologies respectively with trinuclear SBUs (secondary building units). Compound 3 has a 3D structure, whereas 4 has a 2-fold interpenetrated 3D packing structure with a paddlewheel dinuclear SBU and both have pcu topology. Magnetic investigation revealed that 1, 3 and 4 show dominant antiferromagnetic behavior, while 2 shows ferromagnetic interaction at very low temperature. Interestingly 4 shows a sharp decrease in the χMT value from room temperature and this may be because of the direct Co(ii)Co(ii) interaction. Gas sorption studies reveal that 1, 2 and 3 show surface areas of 11.8 m2 g-1, 8.3 m2 g-1 and 28.5 m2 g-1 respectively and better adsorption behavior for CO2 over CH4, whereas 4 is nonporous in nature due to its 2-fold interpenetrated structure.
Collapse
Affiliation(s)
- Ajit Kumar Kharwar
- Department of Chemistry, Indian Institute of Science Education and Research, (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, India.
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research, (IISER), Bhopal By-pass Road, Bhauri, Bhopal-462066, India.
| |
Collapse
|
34
|
I. M, Shahid M, Saleh HAM, Qasem KMA, Ahmad M. A novel sustainable metal organic framework as the ultimate aqueous phase sensor for natural hazards: detection of nitrobenzene and F− at the ppb level and rapid and selective adsorption of methylene blue. CrystEngComm 2020. [DOI: 10.1039/d0ce00356e] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel metal organic framework (MOF) exhibits good aqueous phase sensing properties towards nitrobenzene and fluoride anions and selective adsorption/separation ability for methylene blue.
Collapse
Affiliation(s)
- Mantasha I.
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | - M. Shahid
- Department of Chemistry
- Aligarh Muslim University
- Aligarh 202002
- India
| | | | | | - Musheer Ahmad
- Department of Applied Chemistry (ZHCET)
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|
35
|
Tom L, Kurup MRP. A stimuli responsive multifunctional ZMOF based on an unorthodox polytopic ligand: reversible thermochromism and anion triggered metallogelation. Dalton Trans 2019; 48:16604-16614. [PMID: 31591623 DOI: 10.1039/c9dt02820j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Cd(ii)-ZMOF with a unique sodalite topology has been successfully designed and synthesized using a flexible polytopic compartmental ligand. The microporous complex contains 1D hexagonal channels with large void space for the accommodation of guest molecules. This work demonstrates a new paradigm for designing and functionalizing zeolite-type frameworks. The triconnected linker forms coordination polymer gels in the presence of Cd2+ and the gelation was controlled by the presence of specific anions. They possess good thermal stability and exhibit thixotropic behavior. Optical properties revealed that the complex is exclusively thermochromic and undergoes a reversible transition at 80 °C, changing its color from yellow to orange red. Owing to the large voids in the framework, the complex can serve as a host for use in dye adsorption. Thus this paper offers a new MOF material with exceptional chromic behavior, gelation properties and adsorption capability for the development of high performance multifunctional materials.
Collapse
Affiliation(s)
- Lincy Tom
- Department of Applied Chemistry, Cochin University of Science and Technology, Kochi 682 022, Kerala, India.
| | | |
Collapse
|