1
|
Sidorenko GV, Miroslavov AE, Tyupina MY, Gurzhiy VV, Sakhonenkova AP, Lumpov AA. 2 + 1 Tricarbonyl Complexes of Technetium(I) with a Combination of N, N-Bidentate Ligands and Ethyl Isocyanoacetate: How Strong Is the Interfering Effect of Chloride Ions on Their Formation? Inorg Chem 2023; 62:15593-15604. [PMID: 37695753 DOI: 10.1021/acs.inorgchem.3c02204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Technetium(I) 2 + 1 tricarbonyl complexes with a combination of N,N-bidentate ligands (2,2'-bipyridine, bipy; 1,10-phenanthroline, phen) and ethyl isocyanoacetate were prepared and characterized by NMR, IR, UV/visible, and luminescence spectroscopies and by high-performance liquid chromatography (HPLC). The crystal structures of [99Tc(CO)3(bipy)(CNCH2COOEt)](ClO4) (in the form of a solvate with 0.5CH2Cl2) and [99Tc(CO)3(phen)(CNCH2COOEt)](ClO4) (in the form of an adduct with an outer-sphere phen molecule) were determined by single-crystal X-ray diffraction. To evaluate the interfering effect of chloride ions on the formation of the 2 + 1 complexes, the kinetics of the replacement of labile monodentate ligand X in the complexes [MX(CO)3(N∧N)] (M = Re, 99Tc; N∧N = bipy, phen; X = Cl-, ClO4-) by CNCH2COOEt in ethanol were compared. The 99Tc bipy complexes with X = ClO4- (according to the IR data, perchlorate anion in ethanol is displaced from the coordination sphere by the solvent molecule) and X = Cl- are characterized by close ligand replacement rates. In the case of the 99Tc complexes with phen and Re complexes with both phen and bipy, the chloride complexes are appreciably less reactive than the chloride-free complexes. The technetium complexes are considerably more reactive in ligand replacement than their rhenium analogues. In the chloride-containing medium (saline), the complex [99mTc(CO)3(bipy)(CNCH2COOEt)]+ can be prepared under the conditions acceptable for nuclear medical applications, although higher isonitrile concentrations are required as compared to the chloride-free system.
Collapse
Affiliation(s)
- Georgy V Sidorenko
- Khlopin Radium Institute, 2-i Murinskii pr. 28, St. Petersburg 194021, Russia
- Ozyrsk Technological Institute of the National Research Nuclear University, Pobedy pr., 48, Ozyrsk 456783, Russia
| | - Alexander E Miroslavov
- Khlopin Radium Institute, 2-i Murinskii pr. 28, St. Petersburg 194021, Russia
- Ozyrsk Technological Institute of the National Research Nuclear University, Pobedy pr., 48, Ozyrsk 456783, Russia
- Radiochemistry Department, St. Petersburg State University, University emb. 7/9, St. Petersburg 199034, Russia
| | - Margarita Yu Tyupina
- Khlopin Radium Institute, 2-i Murinskii pr. 28, St. Petersburg 194021, Russia
- Ozyrsk Technological Institute of the National Research Nuclear University, Pobedy pr., 48, Ozyrsk 456783, Russia
| | - Vladislav V Gurzhiy
- Department of Crystallography, St. Petersburg State University, University emb. 7/9, St. Petersburg 199034, Russia
| | - Anna P Sakhonenkova
- Khlopin Radium Institute, 2-i Murinskii pr. 28, St. Petersburg 194021, Russia
- Ozyrsk Technological Institute of the National Research Nuclear University, Pobedy pr., 48, Ozyrsk 456783, Russia
| | - Alexander A Lumpov
- Khlopin Radium Institute, 2-i Murinskii pr. 28, St. Petersburg 194021, Russia
| |
Collapse
|
2
|
Structural Study of Model Rhodium(I) Carbonylation Catalysts Activated by Indole-2-/Indoline-2-Carboxylate Bidentate Ligands and Kinetics of Iodomethane Oxidative Addition. INORGANICS 2022. [DOI: 10.3390/inorganics10120251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The rigid-backbone bidentate ligands Indoline-2-carboxylic acid (IndoliH) and Indole-2-carboxylic acid (IndolH) were evaluated for rhodium(I). IndoliH formed [Rh(Indoli)(CO)(PPh3)] (A2), while IndolH yielded the novel dinuclear [Rh1(Indol’)(CO)(PPh3)Rh2(CO)(PPh3)2] (B2) complex (Indol’ = Indol2−), which were characterized by SCXRD. In B2, the Rh1(I) fragment [Rh1(Indol’)(CO)(PPh3)] (bidentate N,O-Indol) exhibits a square-planar geometry, while Rh2(I) shows a ‘Vaska’-type trans-[O-Rh2(PPh3)2(CO)] configuration (bridging the carboxylate ‘oxo’ O atom of Indol2−). The oxidative addition of MeI to A2 and B2 via time-resolved FT-IR, NMR, and UV/Vis analyses indicated only Rh(III)-alkyl species (A3/B3) as products (no migratory insertion). Variable temperature kinetics confirmed an associative mechanism for A2 via an equilibrium-based pathway (ΔH≠ = (21 ± 1) kJ mol−1; ΔS≠ = (−209 ± 4) J K−1mol−1), with a smaller contribution from a reverse reductive elimination/solvent pathway. The dinuclear complex B2 showed the oxidative addition of MeI only at Rh1(I), which formed a Rh(III)-alkyl, but cleaved the bridged Rh2(I) site, yielding trans-[RhI(PPh3)2(I)(CO)] (5B) as a secondary product. A significantly smaller negative activation entropy [ΔH≠ = (73.0 ± 1.2) kJ mol−1; ΔS≠ = (−21 ± 4) J K−1mol−1] via a more complex/potential interchange mechanism (the contribution of ΔS≠ to the Gibbs free energy of activation, ΔG≠, only ±10%) was inferred, contrary to the entropy-driven oxidative addition of MeI to A2 (the contribution of ΔS≠ to ΔG≠ ± 75%).
Collapse
|
3
|
Steric and electronic influence of Re(I) tricarbonyl complexes with various coordinated β-diketones. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Schutte-Smith M, Visser HG. Crystal and molecular structures of fac-[Re(Bid)(PPh 3)(CO) 3] [Bid is tropolone (TropH) and tribromotropolone (TropBr 3H)]. Acta Crystallogr C Struct Chem 2022; 78:351-359. [PMID: 35662135 PMCID: PMC9167630 DOI: 10.1107/s205322962200465x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/02/2022] [Indexed: 11/10/2022] Open
Abstract
Two rhenium complexes, namely, fac-tricarbonyl(triphenylphosphane-κP)(tropolonato-κ2O,O')rhenium(I), [Re(C7H5O2)(C18H15P)(CO)3] or fac-[Re(Trop)(PPh3)(CO)3] (1), and fac-tricarbonyl(3,5,7-tribromotropolonato-κ2O,O')(triphenylphosphane-κP)rhenium(I), [Re(C7H2Br3O2)(C18H15P)(CO)3] or fac-[Re(TropBr3)(PPh3)(CO)3] (2) (TropH is tropolone and and TropBr3H is tribromotropolone), were synthesized and their crystal and molecular structures confirmed by single-crystal X-ray diffraction. Both crystallized in the space group P-1 and display an array of inter- and intramolecular interactions which were confirmed by solid-state 13C NMR spectroscopy using cross polarization magic angle spinning (CPMAS) techniques, as well as Hirshfeld surface analysis. The slightly longer Re-P distance of 1 [2.4987 (5) versus 2.4799 (11) Å for 1 and 2, respectively] suggests stronger back donation from the carbonyl groups in the former case, possibly due to the stronger electron-donating ability of the unsubstituted tropolonate ring system. However, this is not supported in the Re-CO bond distances of 1 and 2.
Collapse
Affiliation(s)
- Marietjie Schutte-Smith
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9301, South Africa
| | - Hendrik Gideon Visser
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9301, South Africa
| |
Collapse
|
5
|
Kama DV, Frei A, Brink A, Braband H, Alberto R, Roodt A. New approach for the synthesis of water soluble fac-[M I(CO) 3] + bis(diarylphosphino)alkylamine complexes (M = 99Tc, Re). Dalton Trans 2021; 50:17506-17514. [PMID: 34747429 DOI: 10.1039/d1dt03234h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel proof-of-concept is reported to modify the water solubility and potential biological effects of a bis(diphenylphosphino)alkylamine (PNP) ligand and the corresponding metal complex, by introducing an amine group on the outer periphery of the pendant ligand arm. Thus, a tertiary butoxycarbonyl protected N'-Boc-ethylenediamine-N,N-bis(diphenylphosphino) (N'-Boc-PNP) ligand (1) was synthesized by reacting the protected ethylenediamine and chlorodiphenylphosphine in a 1 : 2 molar ratio. The corresponding fac-[Re(CO)3(N'-Boc-PNP)Br] (1A) complex was then obtained by reacting N'-Boc-PNP (1) with (Et4N)2fac-[Re(CO)3Br3] in equimolar amounts in DCM at 50 °C. De-protection of the N'-Boc pendant amine group in 1A with TFA leads to fac-[Re(NH3+-PNP)(CO)3Br]·CF3COO- (1B) which is soluble in D2O (>0.05 M). Treating 1B with saturated aqueous NaHCO3 yields fac-[Re(NH2-PNP)(CO)3Br]·MeOH (1C) in near quantitative yield. Although both 1A and 1C are not soluble in D2O, addition of TFA easily generates 1B (31P NMR), confirming the formation of the protonated amine. Isolation of fac-[99Tc(CO)3(N-Boc-PNP)(Cl)] (1D) confirmed that the rhenium and technetium (99Tc) can be easily interchanged in this process. Reported are hence the unique rhenium series of compounds 1A, 1B and 1C and the corresponding technetium complex 1D, unequivocally characterized by single crystal XRD, as well as IR and 1H NMR spectroscopy. Preliminary antimicrobial evaluation indicates that ligand 1 and its respective rhenium complexes (1A-1C) were not active against selected fungi (Candida albicans and Cryptococcus neoformans) and bacteria (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus). These types of ligands and complexes therefore present themselves as excellent radio models for further evaluation using 186Re, 188Re and 99mTc to potentially study the radiotoxicity of appropriately designed complexes.
Collapse
Affiliation(s)
- Dumisani V Kama
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, South Africa, 9300.
| | - Angelo Frei
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Alice Brink
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, South Africa, 9300.
| | - Henrik Braband
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Roger Alberto
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Andreas Roodt
- Department of Chemistry, University of the Free State, PO Box 339, Bloemfontein, South Africa, 9300.
| |
Collapse
|
6
|
The kinetic substitution reactions and structural analysis of manganese(I) acetylacetonato complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Jacobs FJF, Venter GJS, Fourie E, Kroon RE, Brink A. Substitution reactivity and structural variability induced by tryptamine on the biomimetic rhenium tricarbonyl complex. RSC Adv 2021; 11:24443-24455. [PMID: 35479015 PMCID: PMC9036643 DOI: 10.1039/d1ra03750a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/02/2021] [Indexed: 01/28/2023] Open
Abstract
A series of seven fac-[Re(CO)3(5Me-Sal-Trypt)(L)] complexes containing tryptamine on the N,O 5-methyl-salicylidene bidentate ligand backbone and where L is MeOH, Py, Imi, DMAP, PPh3 coordinated to the 6th position have been studied, including the formation of a dinuclear Re2 cluster. The crystallographic solid state structures show marked similarity in structural tendency, in particular the rigidity of the Re core and the hydrogen bond interactions similar to those found in protein structures. The rates of formation and stability of the complexes were evaluated by rapid time-resolved stopped-flow techniques and the methanol substitution reaction indicates the significant activation induced by the use of the N,O salicylidene bidentate ligand as manifested by the second-order rate constants for the entering nucleophiles. Both linear and limiting kinetics were observed and a systematic evaluation of the kinetics is reported clearly indicating an interchange type of intimate mechanism for the methanol substitution. The anticancer activity of compounds 1–7 was tested on HeLa cells and it was found that all compounds showed similar cytotoxicity where solubility allowed. IC50-values between ca. 11 and 22 μM indicate that some cytotoxicity resides most likely on the salicylidene–tryptamine ligand. The photoluminescence of the seven complexes is similar in maximum emission wavelength with little variation despite the broad range of ligands coordinated to the 6th position on the metal centre. The biomimetic tryptamine rhenium tricarbonyl complex shows rapid substitution reactivity on the 6th position as well as cytotoxicity and photoluminescence capability induced by the salicylidene bidentate ligand.![]()
Collapse
Affiliation(s)
| | | | - Eleanor Fourie
- Department of Chemistry
- University of the Free State
- Bloemfontein 9300
- South Africa
| | - Robin E. Kroon
- Department of Physics
- University of the Free State
- Bloemfontein 9300
- South Africa
| | - Alice Brink
- Department of Chemistry
- University of the Free State
- Bloemfontein 9300
- South Africa
| |
Collapse
|
8
|
Schutte-Smith M, Marker SC, Wilson JJ, Visser HG. Aquation and Anation Kinetics of Rhenium(I) Dicarbonyl Complexes: Relation to Cell Toxicity and Bioavailability. Inorg Chem 2020; 59:15888-15897. [PMID: 33084304 DOI: 10.1021/acs.inorgchem.0c02389] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aquation reactions of four rhenium(I) dicarbonyl complexes, [Re(CO)2(NN)(PR3)(Cl)], where NN = 1,10-phenanthroline (Phen) and 2,9-dimethyl-1,10-phenanthroline (DMPhen) and PR3 = 1,3,5-triaza-7-phosphaadamantane (PTA) and 1,4-diacetyl-1,3,7-triaza-5-phosphabicylco[3.3.1]nonane (DAPTA). Additionally, the anation reactions of the corresponding aqua complexes with Cl- were investigated. Single crystals of [Re(CO)2(DMPhen)(PTA)(Cl)]·DMF and [Re(CO)2(DMPhen)(DAPTA)(Cl)] were obtained, and their structures were determined using X-ray diffraction. The Re-Cl interatomic distances are 2.4991(13) and 2.4922(6) Å, respectively, indicating a mild trans influence effect of the phosphine ligands. The rate constants, kaq, for the aquation reactions of these complexes spanned a range of (3.7 ± 0.3) × 10-4 to (15.7 ± 0.3) × 10-4 s-1 with the two Phen complexes having rate constants that are 2.5 times greater than those of the DMPhen complexes at 298 K. Similarly, the second-order anation rate constants (kCl) of the resulting aqua complexes, [Re(CO)2(NN)(PR3)(H2O)]+, with Cl- ions at 298 K varied between (2.99 ± 0.05) × 10-3 and (6.79 ± 0.09) × 10-3 M-1 s-1. Likewise, these rate constants for the Phen complexes were almost 2 times faster than those of the DMPhen complexes. The pKa values of the four aqua complexes were determined to be greater than 9.0 for all of the complexes with [Re(CO)2(Phen)(PTA)(H2O)]+ having the highest pKa value of 9.28 ± 0.03. From the pKa values and the ratios of the aquation and anation rate contants, which give thermodynamic Cl- binding constants, the speciation of the rhenium(I) complexes in blood plasma, the cytoplasm, and the cell nucleus were estimated. The data suggest that the aqua complexes would be the dominant species in all three environments. This result may have important implications on the potential biological activity of these complexes.
Collapse
Affiliation(s)
| | - Sierra C Marker
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Hendrik G Visser
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa 9301
| |
Collapse
|
9
|
Mokolokolo PP, Brink A, Roodt A, Schutte-Smith M. Subtle variation of stereo-electronic effects in rhodium(I) carbonyl Schiff base complexes and their iodomethane oxidative addition kinetics. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1809657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Pennie P. Mokolokolo
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Alice Brink
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | - Andreas Roodt
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| | | |
Collapse
|
10
|
Gantsho VL, Dotou M, Jakubaszek M, Goud B, Gasser G, Visser HG, Schutte-Smith M. Synthesis, characterization, kinetic investigation and biological evaluation of Re(i) di- and tricarbonyl complexes with tertiary phosphine ligands. Dalton Trans 2020; 49:35-46. [DOI: 10.1039/c9dt04025k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Kinetics of Re(i) complexes illustrated the ability to ‘tune’ the metal centre; phosphine-based complexes were more stable and more cytotoxic.
Collapse
Affiliation(s)
| | - Mazzarine Dotou
- Chimie ParisTech
- PSL University
- CNRS
- Institute of Chemistry for Life and Health Sciences
- Laboratory for Inorganic Chemical Biology
| | - Marta Jakubaszek
- Chimie ParisTech
- PSL University
- CNRS
- Institute of Chemistry for Life and Health Sciences
- Laboratory for Inorganic Chemical Biology
| | - Bruno Goud
- Institut Curie
- PSL University
- CNRS UMR 144
- Paris
- France
| | - Gilles Gasser
- Chimie ParisTech
- PSL University
- CNRS
- Institute of Chemistry for Life and Health Sciences
- Laboratory for Inorganic Chemical Biology
| | | | | |
Collapse
|
11
|
Jansen van Vuuren L, Visser HG, Schutte-Smith M. Crystal structure of 2-(methyl-amino)-tropone. Acta Crystallogr E Crystallogr Commun 2019; 75:1128-1132. [PMID: 31417778 PMCID: PMC6690460 DOI: 10.1107/s2056989019009502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 07/02/2019] [Indexed: 11/11/2022]
Abstract
The title compound, 2-(methyl-amino)-cyclo-hepta-2,4,6-trien-1-one, C8H9NO, crystallizes in the monoclinic space group P21/c, with three independent mol-ecules in the asymmetric unit. The planarity of the mol-ecules is indicated by planes fitted through the seven ring carbon atoms. Small deviations from the planes, with an extremal r.m.s. deviation of 0.0345 Å, are present. In complexes of transition metals with similar ligands, the large planar seven-membered aromatic rings have shown to improve the stability of the complex. Two types of hydrogen-bonding inter-actions, C-H⋯O and N-H⋯O, are observed, as well as bifurcation of these inter-actions. The N-H⋯O inter-actions link mol-ecules to form infinite chains. The packing of mol-ecules in the unit cell shows a pattern of overlapping aromatic rings, forming column-like formations. π-π inter-actions are observed between the overlapping aromatic rings at 3.4462 (19) Å from each other.
Collapse
Affiliation(s)
| | - Hendrik G. Visser
- Department of Chemistry, PO Box 339, University of the Free State, Bloemfontein, 9301, South Africa
| | - Marietjie Schutte-Smith
- Department of Chemistry, PO Box 339, University of the Free State, Bloemfontein, 9301, South Africa
| |
Collapse
|