1
|
Hu Q, Tang C, Yin Y, Kong X, Fu C, Hu R, Wang H. AIE and ICT Synergistic Lysosome-Targeted Ratiometric Fluorescence Sensor for the Detection and Imaging of Th 4+ in the Liver of Zebrafish and Mice. Anal Chem 2025; 97:6101-6110. [PMID: 40064652 DOI: 10.1021/acs.analchem.4c06695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The sensitive detection of the radioactive thorium (Th) ion with an oxidation state of +4 (Th4+) is of great significance for environmental protection and life safety. In this study, five fluorescence sensors with regulated donor-acceptor (D-A) interactions were constructed for Th4+ detection based on intramolecular charge transfer and aggregation-induced emission mechanisms. Among the developed sensors, TPE-D bearing electron-deficient π-bridge and weak D-A interactions presented ratiometric fluorescence detection behavior toward Th4+ in aqueous solution due to its aggregation-induced emission characteristics and unique D-A-D structures. Moreover, TPE-D showed excellent selectivity and sensitivity for Th4+ detection, and the detection limit was as low as 8.1 × 10-8 M. The sensing mechanism observation revealed that Th4+ could coordinate with the hydroxyl, imine, and carbonyl groups of TPE-D accompanied by an electron transfer process. In addition, TPE-D could selectively be enriched in the lysosome. Both the detection of Th4+ in the lysosome and liver of mice and zebrafish were realized based on this strategy, and a mobile-assisted detection approach toward Th4+ in actual water samples was also established with high sensitivity. This is the first report for Th4+ detection in organelles and organs, which provides a great significance and reliable strategy for radionuclide toxicology detection and analysis applications.
Collapse
Affiliation(s)
- Qinghua Hu
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| | - Cen Tang
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| | - Yuting Yin
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| | - Xianghe Kong
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| | - Chao Fu
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| | - Rong Hu
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, Hunan Key Laboratory for the Design and Application of Actinide Complexes, University of South China, 28 Changsheng West Road, Hengyang, Hunan 421001, P. R. China
| |
Collapse
|
2
|
Dua A, Saini P, Goyal S, Selvam P, Ashok Kumar SK, Thiruppathi G, Sundararaj P, Sharma HK, Kumar Ramasamy S. Chromene-chromene Schiff base as a fluorescent chemosensor for Th 4+ and its application in bioimaging of Caenorhabditis elegans. Methods 2024; 225:28-37. [PMID: 38485032 DOI: 10.1016/j.ymeth.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
The manuscript presents the synthesis of a new di-chromene Schiff base (COM-CH) by combining 7-(diethylamino)-2-oxo-2H-chromene-3-carbohydrazide and 4-oxo-4H-chromene-3-carbaldehyde, and its characterization using various analytical techniques. The probe COM-CH functional group contains a hard donor atom that selectively complexes with Th4+ ions. This report investigated COM-CH's sensing ability towards Th4+ chromogenic and fluorogenic methods in ACN: H2O (8:2, v/v) with Th4+ ions. The COM-CH-Th4+ complex was excited at 430 nm, resulting in a bright emission band at 475 nm with a 45 nm Stokes shift. The COM-CH probe demonstrated the highest performance at pH 4.0 to 8.0, with a sensitivity of 18.7 nM. The complex formation of COM-CH with Th4+ was investigated using NMR, FTIR spectrometry, and density functional theory calculations. The COM-CH and Th4+ are bound with 2:1 stoichiometry and an association constant of 1.92 × 108 M-2. The probe's performance enabled the analysis of monazite sand and water samples for Th4+ content. The probe successfully detected Th4+ content in Caenorhabditis elegans, marking the first Th4+ detection in animal models.
Collapse
Affiliation(s)
- Aastha Dua
- Department of Chemistry, M.M Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133 207, Haryana, India
| | - Pratiksha Saini
- Department of Chemistry, M.M Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133 207, Haryana, India
| | - Shiwani Goyal
- Department of Chemistry, M.M Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133 207, Haryana, India
| | - Pravinkumar Selvam
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - S K Ashok Kumar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Govindhan Thiruppathi
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Palanisamy Sundararaj
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Harish K Sharma
- Department of Chemistry, M.M Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133 207, Haryana, India
| | - Selva Kumar Ramasamy
- Department of Chemistry, M.M Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133 207, Haryana, India.
| |
Collapse
|
3
|
Xiong H, Liang H, Dai K, Tian Q, Dai X, Su H, Royal G. Acylhydrazones as sensitive fluorescent sensors for discriminative detection of thorium (IV) from uranyl and lanthanide ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 293:122501. [PMID: 36801741 DOI: 10.1016/j.saa.2023.122501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/25/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Thorium, as a radioactive element, is always associated with rare earth in nature. So it is an exacting challenge to recognize thorium ion (Th4+) in the presence of lanthanide ions because of their overlapping ionic radii. Here three simple acylhydrazones (AF, AH and ABr, with the functional group fluorine, hydrogen and bromine, respectively) are explored for Th4+ detection. They all exhibit excellent "turn-on" fluorescence selectivity toward Th4+ among f-block ions in aqueous medium with outstanding anti-interference abilities, where the coexistence of lanthanide and uranyl ions in addition with other ordinary metal ions have negligible effects during Th4+ detection. Interestingly, pH variation from 2 to 11 has no significant influence on the detection. Among the three sensors, AF displays the highest sensitivity to Th4+ and ABr the lowest with the emission wavelengths in the order of λAF-Th < λAH-Th < λABr-Th. The detection limit of AF to Th4+ can reach 29 nM (pH = 2) with a binding constant of 6.64 × 109 M-2. Response mechanism for AF toward Th4+ is proposed based on the results of HR-MS, 1H NMR and FT-IR spectroscopies together with DFT calculations. This work provides important implications on the development of related series of ligands in nuclide ions detection and future separation from lanthanide ions.
Collapse
Affiliation(s)
- Hui Xiong
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Hua Liang
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, PR China.
| | - Ke Dai
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Qiang Tian
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Xuezhi Dai
- State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, PR China
| | - Haifeng Su
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, PR China.
| | - Guy Royal
- Departement de Chimie Moleculaire, Universite Grenoble Alpes, F-38058 Grenoble, France
| |
Collapse
|
4
|
Fang Y, Dehaen W. Small-molecule-based fluorescent probes for f-block metal ions: A new frontier in chemosensors. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213524] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
5
|
Zhu L, Guo H, Feng X, Yamamoto Y, Bao M. Copper-Catalyzed One-Pot Synthesis of 1,3-Enynes from 2-Chloro- N-(quinolin-8-yl)acetamides and Terminal Alkynes. J Org Chem 2020; 85:8740-8748. [PMID: 32486641 DOI: 10.1021/acs.joc.0c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A method for the chemo-, regio-, and stereoselective one-pot synthesis of 1,3-enynes is described. The reaction of 2-chloro-N-(quinolin-8-yl)acetamides with terminal alkynes proceeds smoothly in the presence of a copper catalyst at room temperature to produce (E)-1,3-enynes in satisfactory to excellent yields. The mechanism study reveals that the cross-dimerization of internal alkynes generated in situ with terminal alkynes proceeds via allene intermediates. The directing group 8-aminoquinoline plays a key role in the current selective synthesis of (E)-1,3-enynes.
Collapse
Affiliation(s)
- Lifan Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Hongyu Guo
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China.,Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan.,Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
6
|
Modulation of Fluorescence properties of 5-Aminoquinoline by Ag+ in aqueous media via charge transfer. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112549] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Tsantis ST, Lagou-Rekka A, Konidaris KF, Raptopoulou CP, Bekiari V, Psycharis V, Perlepes SP. Tetranuclear oxido-bridged thorium(iv) clusters obtained using tridentate Schiff bases. Dalton Trans 2019; 48:15668-15678. [PMID: 31509144 DOI: 10.1039/c9dt03189h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thorium(iv) complexes are currently attracting intense attention from inorganic chemists due to the development of liquid-fluoride thorium reactors and the fact that thorium(iv) is often used as a model system for the study of the more radioactive Np(iv) and Pu(iv). Schiff-base complexes of tetravalent actinides are useful for the development of new separation strategies in nuclear fuel processing and nuclear waste management. Thorium(iv)-Schiff base complexes find applications in the colorimetric detection of this toxic metal ion and the construction of fluorescent on/off sensors for Th(iv) exploiting the ligand-based light emission of its complexes. Clusters of Th(iv) with hydroxide, oxide or peroxide bridges are also relevant to the environmental and geological chemistry of this metal ion. The reactions between Th(NO3)4·5H2O and N-salicylidene-o-aminophenol (LH2) and N-salicylidene-o-amino-4-methylphenol (L'H2) in MeCN have provided access to complexes [Th4O(NO3)2(LH)2(L)5] (1) and [Th4O(NO3)2(L'H)2(L')5] (2) in moderate yields. The structures of 1·4MeCN and 2·2.4 MeCN have been determined by single-crystal X-ray crystallography. The complexes have similar molecular structures possessing the {Th4(μ4-O)(μ-OR')8} core that contains the extremely rare {Th4(μ4-O)} unit. The four ThIV atoms are arranged at the vertexes of a distorted tetrahedron with a central μ4-O2- ion bonded to each metal ion. The H atom of one of the acidic -OH groups of each 3.21 LH- or L'H- ligand is located on the imine nitrogen atom, thus blocking its coordination. The ThIV centres are also held together by one 3.221 L2- or (L')2- group and four 2.211 L2- or (L')2- ligands. The metal ions adopt three different coordination numbers (8, 9, and 10) with a total of four coordination geometries (triangular dodecahedral, muffin, biaugmented trigonal prismatic, and sphenocorona). A variety of H-bonding interactions create 1D chains and 2D layers in the crystal structures of 1·4 MeCN and 2·2.4 MeCN, respectively. The structures of the complexes are compared with those of the uranyl complexes with the same or similar ligands. Solid-state and IR data are discussed in terms of the coordination mode of the organic ligands and the nitrato groups. 1H NMR data suggest that solid-state structures are not retained in DMSO. The solid complexes emit green light at room temperature upon excitation at 400 nm, the emission being ligand-centered.
Collapse
Affiliation(s)
| | | | - Konstantis F Konidaris
- Department of Chemistry, University of Patras, 26504, Patras, Greece. and School of Agriculture Sciences, University of Patras, 30200 Messolonghi, Greece.
| | - Catherine P Raptopoulou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Aghia Paraskevi Attikis, Greece.
| | - Vlasoula Bekiari
- School of Agriculture Sciences, University of Patras, 30200 Messolonghi, Greece.
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Aghia Paraskevi Attikis, Greece.
| | - Spyros P Perlepes
- Department of Chemistry, University of Patras, 26504, Patras, Greece. and Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), Platani, P.O. Box 144, 26504 Patras, Greece
| |
Collapse
|