1
|
Guo H, Kirchhoff JL, Strohmann C, Grabe B, Loh CCJ. Exploiting π and Chalcogen Interactions for the β-Selective Glycosylation of Indoles through Glycal Conformational Distortion. Angew Chem Int Ed Engl 2024; 63:e202316667. [PMID: 38116860 DOI: 10.1002/anie.202316667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Harnessing unconventional noncovalent interactions (NCIs) is emerging as a formidable synthetic approach in difficult-to-access glycosidic chemical space. C-Glycosylation, in particular, has gained a flurry of recent attention. However, most reported methods are restricted to the relatively facile access to α-C-glycosides. Herein, we disclose a β-stereoselective glycosylation of indoles by employing a phosphonoselenide catalyst. The robustness of this protocol is exemplified by its amenability for reaction at both the indolyl C- and N- reactivity sites. In contrast to previous reports, in which the chalcogens were solely involved in Lewis acidic activation, our mechanistic investigation unraveled that the often neglected flanking aromatic substituents of phosphonoselenides can substantially contribute to catalysis by engaging in π-interactions. Computations and NMR spectroscopy indicated that the chalcogenic and aromatic components of the catalyst can be collectively exploited to foster conformational distortion of the glycal away from the usual half-chair to the boat conformation, which liberates the convex β-face for nucleophilic attack.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bastian Grabe
- NMR Department, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
2
|
Chiminelli M, Serafino A, Ruggeri D, Marchiò L, Bigi F, Maggi R, Malacria M, Maestri G. Visible-Light Promoted Intramolecular para-Cycloadditions on Simple Aromatics. Angew Chem Int Ed Engl 2023; 62:e202216817. [PMID: 36705630 DOI: 10.1002/anie.202216817] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
Dearomative cycloadditions are a powerful tool to access a large chemical space exploiting simple and ubiquitous building blocks. The energetic burden due to the loss of aromaticity has however greatly limited their synthetic potential. We devised a general intramolecular method that overcomes these limitations thanks to the photosensitization of allenamides. The visible-light-promoted process gives complex [2.2.2]-(hetero)-bicyclooctadienes at room temperature, likely through the stabilization of transient (bi)radicals by naphthalene. The reaction tolerates several valuable functionalities, offering a convenient handle for a myriad of applications, including original isoindoles and metal complexes.
Collapse
Affiliation(s)
- Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Andrea Serafino
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Davide Ruggeri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Luciano Marchiò
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Franca Bigi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy.,IMEM-CNR, Parco Area delle Scienze 37/A, 43124, Parma, Italy
| | - Raimondo Maggi
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| | - Max Malacria
- IPCM (UMR CNRS 8232), Sorbonne Université, 4 place Jussieu, 75252, Paris Cedex 05, France
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43 124, Parma, Italy
| |
Collapse
|
3
|
Antiferromagnetically coupled iso-structural CrIII, MnIII and FeIII complexes of a tetradentate Schiff base ligand derived from o-phenylenediamine. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00510-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Field-Induced Single Molecule Magnetic Behavior of Mononuclear Cobalt(II) Schiff Base Complex Derived from 5-Bromo Vanillin. INORGANICS 2022. [DOI: 10.3390/inorganics10080105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A mononuclear Co(II) complex of a Schiff base ligand derived from 5-Bromo-vanillin and 4-aminoantipyrine, that has a compressed tetragonal bipyramidal geometry and exhibiting field-induced slow magnetic relaxation, has been synthesized and characterized by single crystal X-ray diffraction, elemental analysis and molecular spectroscopy. In the crystal packing, a hydrogen-bonded dimer structural topology has been observed with two distinct metal centers having slightly different bond parameters. The complex has been further investigated for its magnetic nature on a SQUID magnetometer. The DC magnetic data confirm that the complex behaves as a typical S = 3/2 spin system with a sizable axial zero-field splitting parameter D/hc = 38 cm−1. The AC susceptibility data reveal that the relaxation time for the single-mode relaxation process is τ = 0.16(1) ms at T = 2.0 K and BDC = 0.12 T.
Collapse
|
5
|
π-π Stacking Interaction of Metal Phenoxyl Radical Complexes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031135. [PMID: 35164397 PMCID: PMC8840625 DOI: 10.3390/molecules27031135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
Abstract
π-π stacking interaction is well-known to be one of the weak interactions. Its importance in the stabilization of protein structures and functionalization has been reported for various systems. We have focused on a single copper oxidase, galactose oxidase, which has the π-π stacking interaction of the alkylthio-substituted phenoxyl radical with the indole ring of the proximal tryptophan residue and catalyzes primary alcohol oxidation to give the corresponding aldehyde. This stacking interaction has been considered to stabilize the alkylthio-phenoxyl radical, but further details of the interaction are still unclear. In this review, we discuss the effect of the π-π stacking interaction of the alkylthio-substituted phenoxyl radical with an indole ring.
Collapse
|
6
|
Takeyama T, Suzuki T, Kikuchi M, Kobayashi M, Oshita H, Kawashima K, Mori S, Abe H, Hoshino N, Iwatsuki S, Shimazaki Y. Solid State Characterization of One‐ and Two‐Electron Oxidized Cu
II
‐salen Complexes with
para
‐Substituents: Geometric Structure‐Magnetic Property Relationship. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomoyuki Takeyama
- Department of Chemistry Konan University Higashinada-ku Kobe 658-8501 Japan
| | - Takashi Suzuki
- Graduate School of Science and Engineering Ibaraki University Bunkyo Mito 310-8512 Japan
| | - Misa Kikuchi
- College of Science Ibaraki University Bunkyo Mito 310-8512 Japan
| | - Misato Kobayashi
- Department of Chemistry Konan University Higashinada-ku Kobe 658-8501 Japan
| | - Hiromi Oshita
- Institute of Materials Structure Science (IMSS) High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
| | - Kyohei Kawashima
- Institute for Materials Chemistry Engineering, Kyushu University 6-1 kasuga-koen Kasuga, Fukuoka 816-8580 Japan
| | - Seiji Mori
- Graduate School of Science and Engineering Ibaraki University Bunkyo Mito 310-8512 Japan
- College of Science Ibaraki University Bunkyo Mito 310-8512 Japan
| | - Hitoshi Abe
- Graduate School of Science and Engineering Ibaraki University Bunkyo Mito 310-8512 Japan
- Institute of Materials Structure Science (IMSS) High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
- School of High Energy Accelerator Science SOKENDAI (the Graduate University for Advanced Studies) 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM) Tohoku University 2-1-1 Katahira, Aoba-ku Sendai 980-8577 Japan
| | - Satoshi Iwatsuki
- Department of Chemistry Konan University Higashinada-ku Kobe 658-8501 Japan
| | - Yuichi Shimazaki
- Graduate School of Science and Engineering Ibaraki University Bunkyo Mito 310-8512 Japan
- College of Science Ibaraki University Bunkyo Mito 310-8512 Japan
| |
Collapse
|
7
|
Haseloer A, Denkler LM, Jordan R, Reimer M, Olthof S, Schmidt I, Meerholz K, Hörner G, Klein A. Ni, Pd, and Pt complexes of a tetradentate dianionic thiosemicarbazone-based O^N^N^S ligand. Dalton Trans 2021; 50:4311-4322. [PMID: 33690770 DOI: 10.1039/d1dt00272d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
New tetradentate phenolate O^N^N^S thiosemicarbazone (TSC) ligands and their Ni(ii), Pd(ii) and Pt(ii) complexes were studied. The diamagnetic and square planar configured orange or red complexes show reversible reductive electrochemistry and in part reversible oxidative electrochemistry at very moderate potentials. DFT calculations show essentially pyridyl-imine centred lowest unoccupied molecular orbitals (LUMO) while the highest occupied molecular orbitals (HOMO) receive contributions from the phenolate moiety, the metal d orbitals and the TSC thiolate atom in keeping with UV-vis spectroelectrochemistry. DFT calculations in conjunction with IR spectra showed details of the molecular structures, the UV-vis absorptions were modelled through TD-DFT calculation with very high accuracy. UPS is fully consistent with UV-vis absorption and TD-DFT calculated data and shows decreasing HOMO-LUMO gaps along the series Pd > Pt > Ni.
Collapse
Affiliation(s)
- Alexander Haseloer
- Universität zu Köln, Department für Chemie, Institut für Anorganische Chemie, Greinstraße 6, D-50939 Köln, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Bian R, Wang J, Xu X, Dong X, Ding Y. Investigation of mononuclear, dinuclear, and trinuclear transition metal (II) complexes derived from an asymmetric Salamo‐based ligand possessing three different coordination modes. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.6040] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruo‐Nan Bian
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Ji‐Fa Wang
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Xin Xu
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Xiu‐Yan Dong
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou Gansu 730070 China
| | - Yu‐Jie Ding
- College of Biochemical Engineering Anhui Polytechnic University Wuhu 241000 China
| |
Collapse
|
9
|
Takeyama T, Kobayashi M, Kikuchi M, Ogura T, Shimazaki Y, Iwatsuki S. Benzyl alcohol oxidation mechanisms by one- and two-electron oxidized species of Cu(II)-salen complexes with para-R-substituents, [Cu(R-salen)]+ (R = MeO, MeS; n = 1, 2). Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Oshita H, Shimazaki Y. Recent Advances in One-Electron-Oxidized Cu II -Diphenoxide Complexes as Models of Galactose Oxidase: Importance of the Structural Flexibility in the Active Site. Chemistry 2020; 26:8324-8340. [PMID: 32056294 DOI: 10.1002/chem.201905877] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Indexed: 11/09/2022]
Abstract
The phenoxyl radical plays important roles in biological systems as cofactors in some metalloenzymes, such as galactose oxidase (GO) catalyzing oxidation of primary alcohols to give the corresponding aldehydes. Many metal(II)-phenoxyl radical complexes have hitherto been studied for understanding the detailed properties and reactivities of GO, and thus the nature of GO has gradually become clearer. However, the effects of the subtle geometric and electronic structural changes at the active site of GO, especially the structural change in the catalytic cycle and the effect of the second coordination sphere, have not been fully discussed yet. In this Review, we focus on further details of the model studies of GO and discuss the importance of the structural change at the active site of GO.
Collapse
Affiliation(s)
- Hiromi Oshita
- Faculty of Chemistry of Functional Molecules, Konan University, Higashinada-ku, Kobe, 658-8501, Japan
| | - Yuichi Shimazaki
- Graduate School of Science and Engineering, Ibaraki University, Bunkyo, Mito, 310-8512, Japan
| |
Collapse
|
11
|
Yuan M, Song Z, Badir SO, Molander GA, Gutierrez O. On the Nature of C(sp 3)-C(sp 2) Bond Formation in Nickel-Catalyzed Tertiary Radical Cross-Couplings: A Case Study of Ni/Photoredox Catalytic Cross-Coupling of Alkyl Radicals and Aryl Halides. J Am Chem Soc 2020; 142:7225-7234. [PMID: 32195579 PMCID: PMC7909746 DOI: 10.1021/jacs.0c02355] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The merger of photoredox and nickel catalysis has enabled the construction of quaternary centers. However, the mechanism, role of the ligand, and effect of the spin state for this transformation and related Ni-catalyzed cross-couplings involving tertiary alkyl radicals in combination with bipyridine and diketonate ligands remain unknown. Several mechanisms have been proposed, all invoking a key Ni(III) species prior to undergoing irreversible inner-sphere reductive elimination. In this work, we have used open-shell dispersion-corrected DFT calculations, quasi-classical dynamics calculations, and experiments to study in detail the mechanism of carbon-carbon bond formation in Ni bipyridine- and diketonate-based catalytic systems. These calculations revealed that access to high spin states (e.g., triplet spin state tetrahedral Ni(II) species) is critical for effective radical cross-coupling of tertiary alkyl radicals. Further, these calculations revealed a disparate mechanism for the C-C bond formation. Specifically, contrary to the neutral Ni-bipyridyl system, diketonate ligands lead directly to the corresponding tertiary radical cross-coupling products via an outer-sphere reductive elimination step via triplet spin state from the Ni(III) intermediates. Implications to related Ni-catalyzed radical cross-couplings and the design of new transformations are discussed.
Collapse
Affiliation(s)
- Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Zhihui Song
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Shorouk O. Badir
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
12
|
Wang H, Liu CF, Song Z, Yuan M, Ho YA, Gutierrez O, Koh MJ. Engaging α-Fluorocarboxylic Acids Directly in Decarboxylative C–C Bond Formation. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00789] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hongyu Wang
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549
| | - Chen-Fei Liu
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549
| | - Zhihui Song
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Yee Ann Ho
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549
| | - Osvaldo Gutierrez
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 12 Science Drive 2, Republic of Singapore, 117549
| |
Collapse
|