De Silva DN, Dais TN, Jameson GB, Cutler DJ, Brechin EK, Davies CG, Jameson GNL, Plieger PG. Synthesis and Characterization of Symmetrically
versus Unsymmetrically Proton-Bridged Hexa-Iron Clusters.
ACS OMEGA 2021;
6:16661-16669. [PMID:
34235338 PMCID:
PMC8246689 DOI:
10.1021/acsomega.1c02255]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Syntheses and magnetic and structural characterization of hexa-iron complexes of derivatized salicylaldoximes are discussed. Complexation of Fe(BF4)2·6H2O with each ligand (H2 L1 and H4 L2) in a methanolic-pyridine solution resulted in hexa-iron compounds (C1 and C2, respectively), which each contain two near-parallel metal triangles of [Fe3-μ3-O], linked by six fluoride bridges and stabilized by a hydrogen-bonded proton between the μ3-O groups. Within each metal triangle of C2, Fe(III) ions are connected via the amine "straps" of (H4 L2-2H). Variable-temperature magnetic susceptibility and Mössbauer data of C1 and C2 indicate the presence of dominant antiferromagnetic interactions between the high-spin (S = 5/2) Fe(III) centers. For C1, two quadrupole doublets are observed at room temperature and 5 K, consistent with structural data from which discrete but disordered [Fe3-μ3-O] and [Fe3-μ3-OH] species were inferred. For C2, a single sharp quadrupole doublet with splitting intermediate between those determined for C1 was observed, consistent with the symmetric [Fe3-μ3-O···H···μ3-O-Fe3] species inferred crystallographically from the very short μ3-O···μ3-O separation. The differences in the physical properties of the complexes, as seen in the Mössbauer, X-ray, and magnetic data, are attributed to the conformational flexibility imparted by the nature of the linkages between the closely related ligands.
Collapse