1
|
Sun H, Liu X, Li Y, Zhang F, Huang X, Sun C, Huang F. Mechanistic insights of electrocatalytic CO 2 reduction by Mn complexes: synergistic effects of the ligands. Dalton Trans 2024; 53:1663-1672. [PMID: 38168800 DOI: 10.1039/d3dt03453d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The electrocatalytic mechanisms of CO2 reduction catalyzed by pyridine-oxazoline (pyrox)-based Mn catalysts were investigated by DFT calculations. In-depth comparative analyses of pyrox-based and bipyridine-based Mn complexes were carried out. C-OH cleavage is the rate-determining step for both the protonation-first path and the reduction-first path. The free energy of CO2 activation (ΔG1) and the electrons donated by CO ligands in this step are effective descriptors in regulating the C-OH cleavage barrier. The reduction of carboxylate complex 6 (E6) is the potential-determining step for the reduction-first path. Meanwhile, for the protonation-first path, the initial generation (E2) or the regeneration (E8) of active catalyst might be potential-determining. Hirshfeld charge and orbital contribution analysis indicate that E6 is definitely based on the heterocyclic ligand and E2 is related to both the heterocyclic ligand and three CO ligands. Therefore, replacement of the CO ligand by a stronger electron donating ligand can effectively boost the catalytic activity of CO2 reduction without increasing the overpotential in the reduction-first path. This hypothesis is supported by the mechanism calculations of the Mn complex in which the axial CO ligand is replaced by a pyridine or PMe3.
Collapse
Affiliation(s)
- Haitao Sun
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xueqing Liu
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yafeng Li
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Fang Zhang
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Xiuxiu Huang
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Chuanzhi Sun
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| | - Fang Huang
- Department of Assets and Laboratory Management, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
2
|
Florian J, Cole JM. Analyzing Structure-Activity Variations for Mn-Carbonyl Complexes in the Reduction of CO 2 to CO. Inorg Chem 2023; 62:318-335. [PMID: 36541860 PMCID: PMC9832541 DOI: 10.1021/acs.inorgchem.2c03391] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Contemporary electrocatalysts for the reduction of CO2 often suffer from low stability, activity, and selectivity, or a combination thereof. Mn-carbonyl complexes represent a promising class of molecular electrocatalysts for the reduction of CO2 to CO as they are able to promote this reaction at relatively mild overpotentials, whereby rare-earth metals are not required. The electronic and geometric structure of the reaction center of these molecular electrocatalysts is precisely known and can be tuned via ligand modifications. However, ligand characteristics that are required to achieve high catalytic turnover at minimal overpotential remain unclear. We consider 55 Mn-carbonyl complexes, which have previously been synthesized and characterized experimentally. Four intermediates were identified that are common across all catalytic mechanisms proposed for Mn-carbonyl complexes, and their structures were used to calculate descriptors for each of the 55 Mn-carbonyl complexes. These electronic-structure-based descriptors encompass the binding energies, the highest occupied and lowest unoccupied molecular orbitals, and partial charges. Trends in turnover frequency and overpotential with these descriptors were analyzed to afford meaningful physical insights into what ligand characteristics lead to good catalytic performance, and how this is affected by the reaction conditions. These insights can be expected to significantly contribute to the rational design of more active Mn-carbonyl electrocatalysts.
Collapse
Affiliation(s)
- Jacob Florian
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Jacqueline M. Cole
- Cavendish
Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, U.K.,ISIS
Neutron and Muon Source, STFC Rutherford
Appleton Laboratory, Harwell Campus for Science and Innovation, Didcot OX11 0QX, U.K.,
| |
Collapse
|
3
|
Shipp J, Parker S, Spall S, Peralta-Arriaga SL, Robertson CC, Chekulaev D, Portius P, Turega S, Buckley A, Rothman R, Weinstein JA. Photocatalytic Reduction of CO 2 to CO in Aqueous Solution under Red-Light Irradiation by a Zn-Porphyrin-Sensitized Mn(I) Catalyst. Inorg Chem 2022; 61:13281-13292. [PMID: 35960651 PMCID: PMC9446891 DOI: 10.1021/acs.inorgchem.2c00091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
This work demonstrates photocatalytic CO2 reduction
by a noble-metal-free photosensitizer-catalyst system in aqueous solution
under red-light irradiation. A water-soluble Mn(I) tricarbonyl diimine
complex, [MnBr(4,4′-{Et2O3PCH2}2-2,2′-bipyridyl)(CO)3] (1), has been fully characterized, including single-crystal X-ray crystallography,
and shown to reduce CO2 to CO following photosensitization
by tetra(N-methyl-4-pyridyl)porphyrin Zn(II) tetrachloride
[Zn(TMPyP)]Cl4 (2) under 625 nm irradiation.
This is the first example of 2 employed as a photosensitizer
for CO2 reduction. The incorporation of −P(O)(OEt)2 groups, decoupled from the core of the catalyst by a −CH2– spacer, afforded water solubility without compromising
the electronic properties of the catalyst. The photostability of the
active Mn(I) catalyst over prolonged periods of irradiation with red
light was confirmed by 1H and 13C{1H} NMR spectroscopy. This first report on Mn(I) species as a homogeneous
photocatalyst, working in water and under red light, illustrates further
future prospects of intrinsically photounstable Mn(I) complexes as
solar-driven catalysts in an aqueous environment. A Mn(I) bipyridyl tricarbonyl complex,
where the diimine
ligand is functionalized with water-solubilizing phosphonate ester
groups, has been prepared and is shown to catalytically convert CO2 to CO in aqueous solution following photosensitization from
a water-soluble Zn(II) porphyrin under red-light irradiation.
Collapse
Affiliation(s)
- James Shipp
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Simon Parker
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Steven Spall
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | | | - Craig C Robertson
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Dimitri Chekulaev
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Peter Portius
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Simon Turega
- Department of Chemistry, Sheffield Hallam University, Sheffield S1 1WB, U.K
| | - Alastair Buckley
- Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, U.K
| | - Rachael Rothman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Julia A Weinstein
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| |
Collapse
|
4
|
Electrochemical and Light-driven CO2 reduction by Amine-Functionalized rhenium Catalysts: A comparison between primary and tertiary amine substitutions. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Cohen KY, Evans R, Dulovic S, Bocarsly AB. Using Light and Electrons to Bend Carbon Dioxide: Developing and Understanding Catalysts for CO 2 Conversion to Fuels and Feedstocks. Acc Chem Res 2022; 55:944-954. [PMID: 35290017 DOI: 10.1021/acs.accounts.1c00643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Our global society generates an unwieldy amount of CO2 per unit time. Therefore, the capture of this greenhouse gas must involve a diverse set of strategies. One solution to this problem is the conversion of CO2 into a more useful chemical species. Again, a multiplicity of syntheses and products will be necessary. No matter how elegant the chemistry is, commercial markets often have little use for a small set of compounds made in tremendous yield. Following this reasoning, the Bocarsly Research Group seeks to develop new electrochemical and photochemical processes that may be of utility in the conversion of CO2 to organic compounds. We focus on investigating proton-coupled charge transfer mechanisms that produce both C1 and carbon-carbon bonded products (C2+).In early work, we considered the reduction of CO2 to formate at electrocatalytic indium and tin electrodes. These studies demonstrated the key role of surface oxides in catalyzing the reduction of CO2. This work generated efficient systems for the formation of formate and paved the way to studies using non-copper, intermetallic electrocatalysts for the generation of C2+ species. Most notable is the efficient formation of oxalate at an oxidized Cr3Ga electrode. Oxalate has recently been suggested as a potential nonfossil, alternate organic feedstock.Separately, we have focused on the electrocatalytic effects of pyridine on the reduction of CO2 in aqueous electrolyte. These studies demonstrated that electrodes that normally yield a low hydrogen overpotential (Pd and Pt) show suppressed H2 evolution and strongly enhanced activity for CO2 reduction in the presence of pyridinium. Methanol was observed to form in high Faradaic yield at low overpotential using this system. The 6-electron, 6-proton reduction of CO2 in the presence of pyridinium was intriguing, and significant effort was placed on understanding the mechanism of this reaction both on metal electrodes and on semiconducting photocathodes. P-GaP electrodes were found to provide exceptional behavior for the formation of methanol using only light as the energy source.The pyridinium studies highlighted the role of protons in the overall reduction of CO2, stimulating our interest in the chemistry of MnBr(bpy)(CO)3 and related compounds. This complex was reported to electrochemically reduce CO2 to CO. We saw these reports as an opportunity to study the detailed nature of the proton-coupled electron transfer (PCET) mechanism associated with CO2 reduction. Our investigation of this system revealed the role of hydrogen-bonding in CO2 reduction and pointed the way for the construction of a photochemical process for CO generation using a [(bpy)(CO)3Mn(CN)Mn(bpy)(CO)3]+ photocatalyst.Based on our studies to date, it appears likely that heterogeneous systems can be assembled to convert CO2 into products that are "beyond C2 products." This may open up new practical chemistry in the area of fossil-based replacements for both synthesis and fuels. Systems with pragmatic efficiencies are close to reality. Electrochemical reactors using heterogeneous electrocatalysts show the stability and product selectivity needed to generate industrial opportunities. Continued growth of mechanistic understanding is expected to facilitate the chemical design of cogent systems for the taming of CO2.
Collapse
Affiliation(s)
- Kailyn Y. Cohen
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Rebecca Evans
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Stephanie Dulovic
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Andrew B. Bocarsly
- Frick Laboratory, Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Back C, Seo Y, Choi S, Choe MS, Lee D, Baeg JO, Son HJ, Kang SO. Secondary Coordination Effect on Monobipyridyl Ru(II) Catalysts in Photochemical CO 2 Reduction: Effective Proton Shuttle of Pendant Brønsted Acid/Base Sites (OH and N(CH 3) 2) and Its Mechanistic Investigation. Inorg Chem 2021; 60:14151-14164. [PMID: 34473480 DOI: 10.1021/acs.inorgchem.1c01559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While the incorporation of pendant Brønsted acid/base sites in the secondary coordination sphere is a promising and effective strategy to increase the catalytic performance and product selectivity in organometallic catalysis for CO2 reduction, the control of product selectivity still faces a great challenge. Herein, we report two new trans(Cl)-[Ru(6-X-bpy)(CO)2Cl2] complexes functionalized with a saturated ethylene-linked functional group (bpy = 2,2'-bipyridine; X = -(CH2)2-OH or -(CH2)2-N(CH3)2) at the ortho(6)-position of bpy ligand, which are named Ru-bpyOH and Ru-bpydiMeN, respectively. In the series of photolysis experiments, compared to nontethered case, the asymmetric attachment of tethering ligand to the bpy ligand led to less efficient but more selective formate production with inactivation of CO2-to-CO conversion route during photoreaction. From a series of in situ FTIR analyses, it was found that the Ru-formate intermediates are stabilized by a highly probable hydrogen bonding between pendent proton donors (-diMeN+H or -OH) and the oxygen atom of metal-bound formate (RuI-OCHO···H-E-(CH2)2-, E = O or diMeN+). Under such conformation, the liberation of formate from the stabilized RuI-formate becomes less efficient compared to the nontethered case, consequently lowering the CO2-to-formate conversion activities during photoreaction. At the same time, such stabilization of Ru-formate species prevents the dehydration reaction route (η1-OCHO → η1-COOH on Ru metal) which leads toward the generation of Ru-CO species (key intermediate for CO production), eventually leading to the reduction of CO2-to-CO conversion activity.
Collapse
Affiliation(s)
- Changhyun Back
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Yunjeong Seo
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sunghan Choi
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Min Su Choe
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Daehan Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Jin-Ook Baeg
- Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea
| | - Ho-Jin Son
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| | - Sang Ook Kang
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Korea
| |
Collapse
|
7
|
Manamperi HD, Moore CE, Turro C. Dirhodium complexes as electrocatalysts for CO 2 reduction to HCOOH: role of steric hindrance on selectivity. Chem Commun (Camb) 2021; 57:1635-1638. [PMID: 33462571 DOI: 10.1039/d0cc07659g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of Rh2(ii,ii) complexes were shown to electrocatalytically reduce CO2 to HCOOH. Electrochemical and spectroelectrochemical studies reveal a correlation between catalytic selectivity and efficiency with the steric bulk at the axial sites afforded by the bridging ligands. Mechanistic studies point to the presence of a Rh2(ii,i)-H hydride as a key intermediate in the catalytic cycle.
Collapse
Affiliation(s)
- Hemanthi D Manamperi
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43214, USA.
| | | | | |
Collapse
|
8
|
Roy SS, Talukdar K, Jurss JW. Electro- and Photochemical Reduction of CO 2 by Molecular Manganese Catalysts: Exploring the Positional Effect of Second-Sphere Hydrogen-Bond Donors. CHEMSUSCHEM 2021; 14:662-670. [PMID: 33124150 DOI: 10.1002/cssc.202001940] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/20/2020] [Indexed: 06/11/2023]
Abstract
A series of molecular Mn catalysts featuring aniline groups in the second-coordination sphere has been developed for electrochemical and photochemical CO2 reduction. The arylamine moieties were installed at the 6 position of 2,2'-bipyridine (bpy) to generate a family of isomers in which the primary amine is located at the ortho- (1-Mn), meta- (2-Mn), or para-site (3-Mn) of the aniline ring. The proximity of the second-sphere functionality to the active site is a critical factor in determining catalytic performance. Catalyst 1-Mn, possessing the shortest distance between the amine and the active site, significantly outperformed the rest of the series and exhibited a 9-fold improvement in turnover frequency relative to parent catalyst Mn(bpy)(CO)3 Br (901 vs. 102 s-1 , respectively) at 150 mV lower overpotential. The electrocatalysts operated with high faradaic efficiencies (≥70 %) for CO evolution using trifluoroethanol as a proton source. Notably, under photocatalytic conditions, a concentration-dependent shift in product selectivity from CO (at high [catalyst]) to HCO2 H (at low [catalyst]) was observed with turnover numbers up to 4760 for formic acid and high selectivities for reduced carbon products.
Collapse
Affiliation(s)
- Sayontani Sinha Roy
- Department of Chemistry and Biochemistry, University of Mississippi University, Mississippi, 38677, USA
| | - Kallol Talukdar
- Department of Chemistry and Biochemistry, University of Mississippi University, Mississippi, 38677, USA
| | - Jonah W Jurss
- Department of Chemistry and Biochemistry, University of Mississippi University, Mississippi, 38677, USA
| |
Collapse
|
9
|
Mukherjee J, Siewert I. Manganese and Rhenium Tricarbonyl Complexes Equipped with Proton Relays in the Electrochemical CO
2
Reduction Reaction. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000738] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jyotima Mukherjee
- Institut für Anorganische Chemie Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| | - Inke Siewert
- Institut für Anorganische Chemie Universität Göttingen Tammannstr. 4 37077 Göttingen Germany
| |
Collapse
|
10
|
Rotundo L, Polyansky DE, Gobetto R, Grills DC, Fujita E, Nervi C, Manbeck GF. Molecular Catalysts with Intramolecular Re-O Bond for Electrochemical Reduction of Carbon Dioxide. Inorg Chem 2020; 59:12187-12199. [PMID: 32804491 PMCID: PMC8009525 DOI: 10.1021/acs.inorgchem.0c01181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
A new Re bipyridine-type complex,
namely, fac-Re(pmbpy)(CO)3Cl (pmbpy =
4-phenyl-6-(2-hydroxy-phenyl)-2,2′-bipyridine), 1, carrying a single OH moiety as local proton source, has
been synthesized, and its electrochemical behavior under Ar and under
CO2 has been characterized. Two isomers of 1, namely, 1-cis characterized by the
proximity of Cl to OH and 1-trans, are
identified. The interconversion between 1-cis and 1-trans is clarified by DFT calculations,
which reveal two transition states. The energetically lower pathway
displays a non-negligible barrier of 75.5 kJ mol–1. The 1e– electrochemical reduction of 1 affords the neutral intermediate 1-OPh, formally derived
by reductive deprotonation and loss of Cl– from 1. 1-OPh, which exhibits an entropically favored
intramolecular Re–O bond, has been isolated and characterized.
The detailed electrochemical mechanism is demonstrated by combined
chemical reactivity, spectroelectrochemistry, spectroscopic (IR and
NMR), and computational (DFT) approaches. Comparison with previous
Re and Mn derivatives carrying local proton sources highlights that
the catalytic activity of Re complexes is more sensitive to the presence
of local OH groups. Similar to Re-2OH (2OH = 4-phenyl-6-(phenyl-2,6-diol)-2,2′-bipyridine), 1 and Mn-1OH display a selective reduction of
CO2 to CO. In the case of the Re bipyridine-type complex,
the formation of a relatively stable Re–O bond and a preference
for phenolate-based reactivity with CO2 slightly inhibit
the electrocatalytic reduction of CO2 to CO, resulting
in a low TON value of 9, even in the presence of phenol as a proton
source. A new Re bipyridine-type complex, namely, fac-Re(pmbpy)(CO)3Cl (pmbpy = 4-phenyl-6-(2-hydroxy-phenyl)-2,2′-bipyridine), 1, carrying a single OH moiety as local proton source, has
been synthesized, and its electrochemical behavior under Ar and under
CO2 has been characterized. Two isomers of 1, namely, 1-cis characterized by the
proximity of Cl to OH and 1-trans, are
identified.
Collapse
Affiliation(s)
- Laura Rotundo
- Chemistry Department, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.,CIRCC (Bari), University of Bari, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Dmitry E Polyansky
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Roberto Gobetto
- Chemistry Department, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.,CIRCC (Bari), University of Bari, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - David C Grills
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Etsuko Fujita
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| | - Carlo Nervi
- Chemistry Department, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.,CIRCC (Bari), University of Bari, Via Celso Ulpiani 27, 70126 Bari, Italy
| | - Gerald F Manbeck
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973-5000, United States
| |
Collapse
|
11
|
Lense S, Grice KA, Gillette K, Wolf LM, Robertson G, McKeon D, Saucedo C, Carroll PJ, Gau M. Effects of Tuning Intramolecular Proton Acidity on CO 2 Reduction by Mn Bipyridyl Species. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00230] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sheri Lense
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, Wisconsin 54902, United States
| | - Kyle A. Grice
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago, Illinois 60614, United States
| | - Kara Gillette
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, Wisconsin 54902, United States
| | - Lucienna M. Wolf
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago, Illinois 60614, United States
| | - Grace Robertson
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, Wisconsin 54902, United States
| | - Dylan McKeon
- Department of Chemistry, University of Wisconsin Oshkosh, 800 Algoma Boulevard, Oshkosh, Wisconsin 54902, United States
| | - Cesar Saucedo
- Department of Chemistry and Biochemistry, DePaul University, 1110 West Belden Avenue, Chicago, Illinois 60614, United States
| | - Patrick J. Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104 United States
| | - Michael Gau
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104 United States
| |
Collapse
|
12
|
Isolating substituent effects in Re(I)-phenanthroline electrocatalysts for CO2 reduction. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Nie W, Wang Y, Zheng T, Ibrahim A, Xu Z, McCrory CCL. Electrocatalytic CO2 Reduction by Cobalt Bis(pyridylmonoimine) Complexes: Effect of Ligand Flexibility on Catalytic Activity. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Weixuan Nie
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Yanming Wang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Tao Zheng
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People’s Republic of China
| | - Ammar Ibrahim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Ziqiao Xu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Charles C. L. McCrory
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|