1
|
Phadikar U, Sanyal G, Das S, Kundu A, Kuila C, Murmu NC, Chakraborty B, Kuila T. Unique Multi-Hetero-Interface Engineering of Fe-Doped Co-LDH@MoS 2-Ni 3S 2 Nanoflower-Based Electrocatalyst for Overall Water-Splitting: An Experimental and Theoretical Investigation. CHEMSUSCHEM 2024; 17:e202400821. [PMID: 38870245 DOI: 10.1002/cssc.202400821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/15/2024]
Abstract
Herein, a self-supported, robust, and noble-metal-free 3D hierarchical interface-rich Fe-doped Co-LDH@MoS2-Ni3S2/NF heterostructure electrocatalyst has been prepared through a controllable two-step hydrothermal process. The resultant electrode shows low overpotential of ~95 mV for hydrogen evolution reaction (HER), ~220 mV for the oxygen evolution reaction (OER), and the two-electrode system requires only a cell voltage of ~1.54 V at 10 mA cm-2 current density, respectively. Extensive ab initio calculations were carried out to find out the overpotential for HER, orbital interaction through the determination of electron density of states and quantification of charge transfer by Bader charge analysis. The computed overpotential matched closely with the experimental data. The superior HER performance of the tri-layer is enhanced due to the charge transfer (1.7444 e) to Fe-doped Co-LDH from Ni3S2-MoS2 hybrid. This research strategy paves an effective pathway for affordable green H2 production and future efficient non-precious bifunctional electrocatalyst design for overall water electrolysis.
Collapse
Affiliation(s)
- Ujjwal Phadikar
- Electric Mobility and Tribology Research Group (EM&TRG), Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Gopal Sanyal
- Technology Transfer and Collaboration Division, Knowledge Management Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Srijib Das
- Electric Mobility and Tribology Research Group (EM&TRG), Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Aniruddha Kundu
- Electric Mobility and Tribology Research Group (EM&TRG), Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
| | - Chinmoy Kuila
- Electric Mobility and Tribology Research Group (EM&TRG), Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Naresh Chandra Murmu
- Electric Mobility and Tribology Research Group (EM&TRG), Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Physics Group, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Tapas Kuila
- Electric Mobility and Tribology Research Group (EM&TRG), Council of Scientific and Industrial Research-Central Mechanical Engineering Research Institute, Durgapur, 713209, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|
2
|
Jian J, Wang M, Wang Z, Meng J, Yang Y, Chang L. Tin-doped NiFe 2O 4 nanoblocks grown on an iron foil for efficient and stable water splitting at large current densities. Dalton Trans 2024; 53:520-524. [PMID: 38051219 DOI: 10.1039/d3dt03355d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Developing low-cost and self-supported bifunctional catalysts for highly efficient water splitting devices is of great significance. Herein, different from previously reported NiFe2O4-based electrocatalysts, we have grown nano-NiFe2O4 directly onto the iron foil (IF) surface and in situ introduced Sn4+ into NiFe2O4. The resulting experimental phenomena confirmed that the as-synthesized Sn-NiFe2O4/IF can deliver large-current densities (>1000 mA cm-2) during oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) processes at a low overpotential. The needed overpotentials at the current density of 10 and 1000 mA cm-2 are 231 and 368 mV for OER and 57 and 439 mV for HER, respectively. Additionally, when applied for the two-electrode water splitting, the corresponding needed voltage for Sn-NiFe2O4/IF at the current density of 10 mA cm-2 was only 1.56 V, which was comparable to the commercial Pt/C-RuO2/IF electrode. Thus, the introduced Sn4+ greatly enhanced the electrocatalytic property of Sn-NiFe2O4/IF, resulting in a superior bifunctional catalyst that can be applied for large-scale hydrogen production.
Collapse
Affiliation(s)
- Juan Jian
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Meiting Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Zhuo Wang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Jingwen Meng
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Yuqin Yang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| | - Limin Chang
- Key Laboratory of Preparation and Applications of Environmental Friendly Material of the Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, P. R. China.
| |
Collapse
|
3
|
Dou M, Yao M, Ding K, Cheng Y, Shao H, Li S, Chen Y. Ni(OH) 2-derived lamellar MoS 2/Ni 3S 2/NF with Fe-doped heterojunction catalysts for efficient overall water splitting. Dalton Trans 2023. [PMID: 37999648 DOI: 10.1039/d3dt02830e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Heterostructures formed by combining semiconductor materials with different band structures can provide work functions, d-band positions and electronic properties different from bulk materials and are considered as an effective strategy to improve the catalytic activity through electronic modification. In this study, an efficient MoS2/Fe-Ni3S2/NF heterojunction material was prepared by a two-step hydrothermal method. With the help of flake Ni(OH)2 synthesized in the first step, growth sites were provided for flake Ni3S2. The electronic structure of Ni3S2 was optimized by Fe doping, while the construction of the MoS2/Fe-Ni3S2 heterostructure allowed the catalyst to expose more active sites. MoS2/Fe-Ni3S2/NF exhibited a small charge transfer resistance and excellent electrocatalytic performance. At a current density of 10 mA cm-2, only low overpotentials of 148 mV and 118 mV were required for the oxygen precipitation reaction (OER) and hydrogen precipitation reaction (HER), respectively. Notably, when MoS2/Fe-Ni3S2/NF is used as the anode and cathode for overall hydrolysis, only 1.51 V is required to reach a current density of 10 mA cm-2, demonstrating its great potential for application in hydrolysis. This work provides a feasible idea for the rational construction of non-precious metal bifunctional electrocatalysts with excellent performance.
Collapse
Affiliation(s)
- Minghao Dou
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Mengjie Yao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Kai Ding
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Yuye Cheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Hongyu Shao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Shenjie Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| | - Yanyan Chen
- School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, PR China.
| |
Collapse
|
4
|
An Y, Hu X, Wang X, Tian J. MoSe 2-NiSe dual co-catalysts modified g-C 3N 4 for enhanced photocatalytic H 2 generation. J Colloid Interface Sci 2023; 649:426-434. [PMID: 37354799 DOI: 10.1016/j.jcis.2023.06.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Solar energy conversion into hydrogen (H2) energy has attracted much attention. However, the low light utilization rate and fast carrier recombination of photocatalysts extremely limit the practical application of photocatalytic H2 production. In this paper, MoSe2-NiSe with abundant active sites and interfacial electronic structures as dual co-catalysts were assembled on g-C3N4 nanosheets (NSs) vis a solvothermal reaction process. MoSe2-NiSe/g-C3N4 NSs composite exhibited improved light absorption and photoelectrochemical properties. The photocatalytic H2 production rate of MoSe2-NiSe/g-C3N4 composite achieved 2379.04 μmol·h-1·g-1, which is 99.25, 1.44, and 3.67 times those of pure g-C3N4 nanosheets (23.97 μmol·h-1·g-1), MoSe2/C3N4 (1654.57 μmol·h-1·g-1), and NiSe/C3N4 (649.08 μmol·h-1·g-1), respectively. The apparent quantum efficiency (AQE) value of MoSe2-NiSe/g-C3N4 achieved 4.07 % under light at λ = 370 nm. The corresponding characterization and experiments proved that 2D ultrathin g-C3N4 NSs with a large surface area and short charge-transfer distance could facilitate light scattering and the transport of photoexcited electrons. MoSe2-NiSe, as a dual co-catalyst, showed strong electronic synergistic interaction between the interfaces, thus improving the conductivity and promoting the electron transfer process.
Collapse
Affiliation(s)
- Yan An
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoping Hu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinyu Wang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
5
|
Jia F, Zou X, Wei X, Bao W, Ai T, Li W, Guo Y. Synergistic Effect of P Doping and Mo-Ni-Based Heterostructure Electrocatalyst for Overall Water Splitting. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16093411. [PMID: 37176293 PMCID: PMC10179828 DOI: 10.3390/ma16093411] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Heterostructure construction and heteroatom doping are powerful strategies for enhancing the electrolytic efficiency of electrocatalysts for overall water splitting. Herein, we present a P-doped MoS2/Ni3S2 electrocatalyst on nickel foam (NF) prepared using a one-step hydrothermal method. The optimized P[0.9mM]-MoS2/Ni3S2@NF exhibits a cluster nanoflower-like morphology, which promotes the synergistic electrocatalytic effect of the heterostructures with abundant active centers, resulting in high catalytic activity for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline electrolyte. The electrode exhibits low overpotentials and Tafel slopes for the HER and OER. In addition, the catalyst electrode used in a two-electrode system for overall water splitting requires an ultralow voltage of 1.42 V at 10 mA·cm-2 and shows no obvious increase in current within 35 h, indicating excellent stability. Therefore, the combination of P doping and the heterostructure suggests a novel path to formulate high-performance electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Feihong Jia
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xiangyu Zou
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xueling Wei
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Weiwei Bao
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Taotao Ai
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Wenhu Li
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yuchen Guo
- School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| |
Collapse
|
6
|
Carbon-encapsulated Co 2P/P-modified NiMoO 4 hierarchical heterojunction as superior pH-universal electrocatalyst for hydrogen production. J Colloid Interface Sci 2023; 634:693-702. [PMID: 36563426 DOI: 10.1016/j.jcis.2022.12.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The development of hydrogen evolution reaction (HER) technology that operates stably in a wide potential of hydrogen (pH) range of electrolytes is particular important for large-scale hydrogen production. However, the rational design of low-cost and pH-universal electrocatalyst with high catalytic performance remains a huge challenge. Herein, Co2P nanoparticles strongly coupled with P-modified NiMoO4 nanorods are directly grown on nickel foam (NF) substrates through carbon layer encapsulation (denoted as C-Co2P@P-NiMoO4/NF) by hydrothermal, deposition, and phosphating processes. This novel kind of hierarchical heterojunction has abundant heterogeneous interfaces, strong electronic interactions, and optimized reaction kinetics, representing the highly-active pH-universal electrodes for HER. Remarkably, the C-Co2P@P-NiMoO4/NF catalyst shows excellent HER properties in acidic and basic electrolytes, where the overpotentials of 105 mV and 107 mV are applied to drive the current density of 100 mA cm-2. In addition, a low overpotential of 177 mV at 100 mA cm-2 along with high stability is realized in 1 M phosphate buffer solution (PBS), which is close to the state-of-the-art non-precious metal electrocatalysts. Our work not only provides a class of robust pH-universal electrocatalyst but also offers a novel way for the rational design of other heterogeneous materials bythe interface regulation strategy.
Collapse
|
7
|
Recent progress in carbon-based materials boosting electrochemical water splitting. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Jin C, Hou M, Li X, Liu D, Qu D, Dong Y, Xie Z, Zhang C. Rapid electrodeposition of Fe-doped nickel selenides on Ni foam as a bi-functional electrocatalyst for water splitting in alkaline solution. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Zhang Z, Li Y, Zhang Z, Zheng H, Liu Y, Yan Y, Li C, Lu H, Shi Z, Feng S. An electrochemical modification strategy to fabricate NiFeCuPt polymetallic carbon matrices on nickel foam as stable electrocatalysts for water splitting. Chem Sci 2022; 13:8876-8884. [PMID: 35975144 PMCID: PMC9350615 DOI: 10.1039/d2sc02845j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022] Open
Abstract
Electrochemical modification is a mild and economical way to prepare electrocatalytic materials with abundant active sites and high atom efficiency. In this work, a stable NiFeCuPt carbon matrix deposited on nickel foam (NFFeCuPt) was fabricated with an extremely low Pt load (∼28 μg cm−2) using one-step electrochemical co-deposition modification, and it serves as a bifunctional catalyst for overall water splitting and achieves 100 mA cm−2 current density at a low cell voltage of 1.54 V in acidic solution and 1.63 V in alkaline solution, respectively. In addition, a novel electrolyte was developed to stabilize the catalyst under acidic conditions, which provides inspiration for the development of highly efficient, highly stable, and cost-effective ways to synthesize electrocatalysts. Multiple metal elements immobilized into a carbon matrix to fabricate an ultra-stable water splitting electrocatalyst by one-step electrochemical modification.![]()
Collapse
Affiliation(s)
- Ziqi Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yiduo Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - He Zheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuxin Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuxing Yan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Chunguang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Haiyan Lu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
10
|
Wang F, Liu T, Liu Z, Zhang Z, Min S. Ni2P nanowire arrays grown on Ni foam as an efficient monolithic cocatalyst for visible light dye-sensitized H2 evolution. Dalton Trans 2022; 51:11029-11039. [DOI: 10.1039/d2dt01402e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nanostructured H2 evolution cocatalysts are able to promote charge separation and thus enhance the efficiency of the photocatalytic H2 evolution reaction (HER). However, the nanosized cocatalyst particles are easily detached...
Collapse
|
11
|
Wang H, Liu H, Feng T, Wang L, Yuan W, Huang Q, Guo Y. Electronically modulated nickel boron by CeO x doping as a highly efficient electrocatalyst towards overall water splitting. Dalton Trans 2021; 51:675-684. [PMID: 34908068 DOI: 10.1039/d1dt03278j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Exploiting economic, efficient and durable non-noble metal electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is promising, but still faces enormous challenges. Herein, the strategy of doping a metal boride with a rare earth metal oxide has been explored to develop a highly efficient bifunctional electrocatalyst. The novel electrocatalyst CeOx-NiB consists of CeOx-doped NiB supported on nickel foam, and was fabricated by a one-step mild electroless plating reaction. Remarkably, the CeOx-NiB@NF electrode delivers a current density of 10 mA cm-2 at overpotentials of only 19 mV and 274 mV for the HER and OER, respectively. Two-electrode electrolyzers with the CeOx-NiB@NF electrode require only 1.424 V to deliver 10 mA cm-2 for overall water splitting in 1.0 M KOH, outperforming the Pt-C/NF∥IrO2/NF electrolyzer. Meanwhile, the electrode also has good stability (can work for 100 hours at 10 mA cm-2) and industrial-grade current density. This work provides a new idea for the development of efficient and durable non-precious metal catalysts.
Collapse
Affiliation(s)
- Huimin Wang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, P.R. China.
| | - Huixiang Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P.R. China.
| | - Tao Feng
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, P.R. China.
| | - Lincai Wang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, P.R. China.
| | - Wenyi Yuan
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, P.R. China.
| | - Qing Huang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, P.R. China.
| | - Yanhui Guo
- Department of Materials Science, Fudan University, Shanghai, 200433, P.R. China.
| |
Collapse
|
12
|
Hao W, Fan J, Xu X, Zhang Y, Lv H, Wang S, Deng S, Weng S, Guo Y. Sulfur doped FeO x nanosheet arrays supported on nickel foam for efficient alkaline seawater splitting. Dalton Trans 2021; 50:13312-13319. [PMID: 34608917 DOI: 10.1039/d1dt02506f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing economical, efficient and stable bifunctional catalysts for hydrogen production from seawater is of great significance for hydrogen utilization. Herein, sulfur doped iron oxide nanosheet arrays supported on nickel foam (FeOx-Ni3S2@NF) are prepared by a one-pot solvothermal reaction. Owing to the high intrinsic activity of FeOx-Ni3S2, the large catalytic specific surface area of nanosheet arrays and the fast charge transportation capability achieved by the self-supporting configuration, the FeOx-Ni3S2@NF electrode delivers excellent catalytic performance in alkaline simulated seawater (1 M KOH + 0.5 M NaCl). Impressively, a low overpotential of 120 mV at 50 mA cm-2 with a Tafel slope of 57 mV dec-1 for the hydrogen evolution reaction and an overpotential of 470 mV at 200 mA cm-2 with a Tafel slope of 62 mV dec-1 for the oxygen evolution reaction are achieved. More importantly, the voltage is only 1.5 V at 50 mA cm-2 for continuous overall water splitting for 100 h at 200 mA cm-2 with negligible decay in alkaline simulated seawater with almost 100% Faraday efficiency. This work provides a simple and universal strategy to prepare highly efficient bifunctional catalytic materials, promoting the development of Earth-abundant materials to catalyse seawater splitting to produce high-purity hydrogen.
Collapse
Affiliation(s)
- Weiju Hao
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Jinli Fan
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Xia Xu
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yiran Zhang
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Haiyang Lv
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Shige Wang
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Shengwei Deng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuo Weng
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yanhui Guo
- Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|
13
|
Introducing a self-improving catalyst for hydrogen evolution and efficient catalyst for oxygen evolution reaction. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Karpuraranjith M, Chen Y, Wang B, Ramkumar J, Yang D, Srinivas K, Wang W, Zhang W, Manigandan R. Hierarchical ultrathin layered MoS 2@NiFe 2O 4 nanohybrids as a bifunctional catalyst for highly efficient oxygen evolution and organic pollutant degradation. J Colloid Interface Sci 2021; 592:385-396. [PMID: 33677198 DOI: 10.1016/j.jcis.2021.02.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
Rational design and highly efficient dual-functional catalyst are still difficult to develop for electrocatalytic oxygen evolution reaction and degradation of RhB dye pollutant. Herein, we report a highly efficient "bandgap matching and interfacial coupling" strategy to synthesize nano-assembled ultrathin layered MoS2@NiFe2O4 (MS@NiFeO) bifunctional catalyst constructed by the hydrothermal route and subsequently amine-hydrolysis. The OER performance of the prepared MS@NiFeO catalyst delivers a low overpotential of 290 mV at 10 mA/cm2 and Tafel slope is 69.2 mV dec-1 in an alkaline solution. In addition, the nano-assembled ultrathin layered structure of MS@NiFeO showed a highly efficient (96.37%) RhB dye degradation performance than that of MoS2 nanosheets and NiFe2O4 nanostructures. Unique nanostructure of ultrathin layered MS@NiFeO with suitable band matching, interfacial charge transfer, high surface area and more active sites favored for the enhancement of the catalytic activity. This work presents an unpretentious construction and low-cost production strategy to synthesize bifunctional hybrid catalyst for oxygen evolution reaction as well as degradation of organic pollutant with superior efficiency and longer stability.
Collapse
Affiliation(s)
- Marimuthu Karpuraranjith
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| | - Yuanfu Chen
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China; School of Science and Institute of Oxygen Supply, Tibet University, Lhasa 850000, PR China.
| | - Bin Wang
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jeyagopal Ramkumar
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Dongxu Yang
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Katam Srinivas
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Wei Wang
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Wanli Zhang
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Ramadoss Manigandan
- School of Electronic Science and Technology, and State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China.
| |
Collapse
|
15
|
Li M, Xu Z, Li Y, Wang J, Zhong Q. In situ fabrication of cobalt/nickel sulfides nanohybrid based on various sulfur sources as highly efficient bifunctional electrocatalysts for overall water splitting. NANO SELECT 2021. [DOI: 10.1002/nano.202100155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Mengqiu Li
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing China
| | - Ze Xu
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing China
| | - Yuting Li
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing China
| | - Juan Wang
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing China
| | - Qin Zhong
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing China
| |
Collapse
|
16
|
One-pot synthesis of ruthenium nanoparticles embedded nitrogen-doped carbon framework for electrocatalytic hydrogen evolution reaction. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107914] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Rendón-Patiño A, Domenech-Carbó A, Primo A, García H. Superior Electrocatalytic Activity of MoS 2-Graphene as Superlattice. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E839. [PMID: 32349364 PMCID: PMC7712152 DOI: 10.3390/nano10050839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/22/2023]
Abstract
Evidence by selected area diffraction patterns shows the successful preparation of large area (cm × cm) MoS2/graphene heterojunctions in coincidence of the MoS2 and graphene hexagons (superlattice). The electrodes of MoS2/graphene in superlattice configuration show improved catalytic activity for H2 and O2 evolution with smaller overpotential of +0.34 V for the overall water splitting when compared with analogous MoS2/graphene heterojunction with random stacking.
Collapse
Affiliation(s)
- Alejandra Rendón-Patiño
- Instituto de Tecnología Química (CSIC-UPV) and Department of Chemistry, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain;
| | - Antonio Domenech-Carbó
- Departamento de Química Analítica, Universitat de Valencia, Av. Del Dr. Moliner s/n, 46100 Burjassot, Spain;
| | - Ana Primo
- Instituto de Tecnología Química (CSIC-UPV) and Department of Chemistry, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain;
| | - Hermenegildo García
- Instituto de Tecnología Química (CSIC-UPV) and Department of Chemistry, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de Valencia, Avenida de los Naranjos s/n, 46022 Valencia, Spain;
| |
Collapse
|
18
|
Xue JY, Li C, Li FL, Gu HW, Braunstein P, Lang JP. Recent advances in pristine tri-metallic metal-organic frameworks toward the oxygen evolution reaction. NANOSCALE 2020; 12:4816-4825. [PMID: 32057061 DOI: 10.1039/c9nr10109h] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Pristine metal-organic frameworks (MOFs) have received much attention in recent years due to their high specific surface areas, large porosity, excellent pore size distributions, flexible structure, and remarkable catalytic properties. The design of functional MOFs that can function as efficient HER and OER catalysts is significant in solving the energy crisis but remains a big challenge. Tri-metallic metal-organic frameworks show a good application prospect in water oxidation. In this review, we are going to focus on the latest progress and future trends in the development of pristine trimetallic MOFs with respect to the OER. The synergistic effect between multi-metal active sites is effective at improving the intrinsic activity of MOFs toward the OER. By summarizing the synthesis method of tri-metallic MOFs and observing their performance toward the oxygen evolution reaction, we hope that this review will trigger new developments in coordination chemistry, electrochemistry, nanomaterials and energy materials.
Collapse
Affiliation(s)
- Jiang-Yan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Cong Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| | - Fei-Long Li
- School of Chemistry and Materials Engineering, Changshu Institute of Technology, 99 South 3rd load, Changshu 215500, Jiangsu, People's Republic of China
| | - Hong-Wei Gu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China.
| | - Pierre Braunstein
- Institut de Chimie (UMR 7177 CNRS), Université de Strasbourg, 4, rue Blaise Pascal - CS 90032, 67081 Strasbourg, France
| | - Jian-Ping Lang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, Jiangsu, People's Republic of China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
19
|
Lv X, Kannan P, Ji S, Wang X, Wang H. Synthesis of Ni 3S 2 catalysts using various sulphur sources and their HER and OER performances. CrystEngComm 2020. [DOI: 10.1039/d0ce01015d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The performance of nickel sulfur catalyst for HER and OER was affected by its structure resulted from the different sulfur sources.
Collapse
Affiliation(s)
- Xiaowei Lv
- State Key Laboratory Base for Eco-Chemical Engineering
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Palanisamy Kannan
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Shan Ji
- College of Biological
- Chemical Science and Engineering
- Jiaxing University
- Jiaxing
- China
| | - Xuyun Wang
- State Key Laboratory Base for Eco-Chemical Engineering
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| | - Hui Wang
- State Key Laboratory Base for Eco-Chemical Engineering
- College of Chemical Engineering
- Qingdao University of Science and Technology
- Qingdao
- China
| |
Collapse
|