1
|
Lázaro A, Bosque R, Marín S, Pérez-León R, Badia J, Baldomà L, Rodríguez L, Crespo M, Cascante M. Exploring the effect of the axial ligands on the anticancer activity of [C,N,N'] Pt(IV) cyclometallated compounds. Dalton Trans 2024; 53:13030-13043. [PMID: 39028273 DOI: 10.1039/d4dt01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The synthesis of three novel [C,N,N'] Pt(IV) cyclometallated compounds containing hydroxo, dichloroacetato or trifluoroacetato axial ligands is reported. Compound [PtCl(OH)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (3) was prepared by the oxidative addition of hydrogen peroxide to [C,N,N'] Pt(II) cyclometallated compound [PtCl{(CH3)2N(CH2)2NCH(4-FC6H3)}] (1) and further the reaction of compound 3 with dichloroacetate or trifluoroacetate anhydrides led to the formation of the corresponding compounds [PtCl(CHCl2COO)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (4) and [PtCl(CF3COO)2{(CH3)2N(CH2)2NCH(4-FC6H3)}] (5). The properties of the new compounds along with those of the compound [PtCl3{(CH3)2N(CH2)2NCH(4-FC6H3)}] (2), including stability in aqueous media, reduction potential using cyclic voltammetry, cytotoxic activity against the HCT116 CRC cell line, DNA interaction, topoisomerase I and cathepsin inhibition, and computational studies involving reduction of the Pt(IV) compounds and molecular docking studies, are presented. Interestingly, the antiproliferative activity of these compounds against the HCT116 CRC cell line, which is in all cases higher than that of cisplatin, follows the same trend as the reduction potentials so that the most easily reduced compound 2 is the most potent. In contrast, according to the electrophoretic mobility and molecular docking studies, the efficacy of these compounds in binding to DNA is not related to their cytotoxicity. The most active compound 2 does not modify the DNA electrophoretic mobility while the less potent compound 3 is the most efficient in binding to DNA. Although compounds 2 and 3 have only a slight effect on cell cycle distribution and apoptosis induction, generation of ROS to a higher extent for the most easily reduced compound 2 was observed.
Collapse
Affiliation(s)
- Ariadna Lázaro
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Ramón Bosque
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
| | - Silvia Marín
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Biomedicina molecular, Facultat de Biologia, Universitat de Barcelona, E-08028-Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Raúl Pérez-León
- Departament de Bioquímica i Biomedicina molecular, Facultat de Biologia, Universitat de Barcelona, E-08028-Barcelona, Spain
| | - Josefa Badia
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia, E-08028-Barcelona, Spain
| | - Laura Baldomà
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Fisiologia, Secció de Bioquímica i Biologia Molecular, Facultat de Farmàcia, E-08028-Barcelona, Spain
| | - Laura Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
- Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain
| | - Margarita Crespo
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, E-08028-Barcelona, Spain.
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
| | - Marta Cascante
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain.
- Departament de Bioquímica i Biomedicina molecular, Facultat de Biologia, Universitat de Barcelona, E-08028-Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y digestivas (CIBEREHD), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
2
|
Yang Y, Du LQ, Huang Y, Liang CJ, Qin QP, Liang H. Platinum(II) 5-substituted-8-hydroxyquinoline coordination compounds induces mitophagy-mediated apoptosis in A549/DDP cancer cells. J Inorg Biochem 2023; 241:112152. [PMID: 36736244 DOI: 10.1016/j.jinorgbio.2023.112152] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
For the first time, two new mononuclear platinum(II) coordination compounds, [Pt(L1)(DMSO)Cl] (PtL1) and [Pt(L2)(DMSO)Cl] (PtL2) with the 5-(ethoxymethyl)-8-hydroxyquinoline hydrochloride (H-L1) and 5-bromo-8-hydroxyquinoline (H-L2) have been synthesized and characterized. The cytotoxic activity of PtL1 and PtL2 were screened in both healthy HL-7702 cell line and cancer cell lines, human lung adenocarcinoma A549 cancer cells and cisplatin-resistant lung adenocarcinoma A549/DDP cancer cells (A549R), and were compared to that of the H-L1, H-L2, H-L3 ligands and 8-hydroxyquinoline (H-L3) platinum(II) complex [Pt(L3)(DMSO)Cl] (PtL3). MTT results showed that PtL1 bearing one deprotonated L1 ligand against A549R was more potent by 8.8-48.6 fold than that of PtL2 and PtL3 complexes but was more selective toward healthy HL-7702 cells. In addition, PtL1 and PtL3 overcomes tumour drug resistance by significantly inducing mitophagy and causing the change of the related proteins expression, which leads to cell apoptosis. Moreover, the inhibitory effect of PtL1 on A549 xenograft tumour was 68.2%, which was much higher than that of cisplatin (cisPt, ca. 50.0%), without significantly changing nude mice weight in comparison with the untreated group. This study helps to explore the potential of the platinum(II) 5-substituted-8-hydroxyquinoline coordination compounds for the new Pt-resistant cancer therapy.
Collapse
Affiliation(s)
- Yan Yang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Ling-Qi Du
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Yan Huang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China
| | - Chun-Jie Liang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China; State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
3
|
Bär SI, Schleser SW, Oberhuber N, Herrmann A, Schlotte L, Weber SE, Schobert R. Trans-[bis(benzimidazol-2-ylidene)dichlorido]platinum(II) complexes with peculiar modes of action and activity against cisplatin-resistant cancer cells. J Inorg Biochem 2023; 238:112028. [PMID: 36274479 DOI: 10.1016/j.jinorgbio.2022.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
Abstract
Three series of cis- and trans-[bis(benzimidazol-2-ylidene)dichlorido]platinum(II) and cis-[(benzimidazol-2-ylidene)(DMSO)dichlorido]platinum(II) complexes were synthesised and screened for cytotoxicity against six human cancer cell lines. Depending on their N-alkyl and 5-alkoxycarbonyl substituents, two-digit nanomolar to single-digit micromolar IC50 values against cancer cell lines intrinsically resistant to or ill-responding to cisplatin were reached by both cis- and trans-configured complexes. The stability of the complexes under aqueous biotest conditions was shown via 1H and 195Pt NMR monitoring to be dependent on their configuration and their N-substituents. Localisation studies employing click reactions with 1-alkyne- or cyclopropene-tagged derivatives revealed that the cis-complexes accumulated in the cell nuclei and the trans-complexes in the mitochondria. While the most active cis-complexes showed modes of action akin to those of cisplatin, the most active trans-complexes differed from cisplatin by much lower rates of cellular uptake and ROS production, and by their non-interaction with the cell cycle and the DNA of cancer cells. Thus, we identified structural key elements for the synthesis of optimised trans-configured NHC platinum(II) complexes with high activity also against cisplatin-refractory cancer cells.
Collapse
Affiliation(s)
- Sofia I Bär
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Sebastian W Schleser
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Natalie Oberhuber
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Alexander Herrmann
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Luca Schlotte
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Stefanie E Weber
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, Universitaetsstrasse 30, 95447 Bayreuth, Germany.
| |
Collapse
|
4
|
Vivancos Á, Bautista D, González-Herrero P. Phosphorescent Tris-cyclometalated Pt(IV) Complexes with Mesoionic N-Heterocyclic Carbene and 2-Arylpyridine Ligands. Inorg Chem 2022; 61:12033-12042. [PMID: 35860839 PMCID: PMC9377419 DOI: 10.1021/acs.inorgchem.2c02039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis, structure, photophysical properties, and electrochemistry of the first series of Pt(IV) tris-chelates bearing cyclometalated aryl-NHC ligands are reported. The complexes have the general formula [Pt(trz)2(C∧N)]+, combining two units of the cyclometalated, mesoionic aryl-NHC ligand 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene (trz) with a cyclometalated 2-arylpyridine [C∧N = 2-(2,4-difluorophenyl)pyridine (dfppy), 2-phenylpyridine (ppy), 2-(p-tolyl)pyridine (tpy), 2-(2-thienyl)pyridine (thpy), 2-(9,9-dimethylfluoren-2-yl)pyridine (flpy)], and presenting a mer arrangement or metalated aryls. They exhibit a significant photostability under UV irradiation and long-lived phosphorescence in the blue to yellow color range, arising from 3LC excited states involving the C∧N ligands, with quantum yields of up to 0.34 in fluid solution and 0.77 in the rigid matrix at 298 K. The time-dependent density functional theory (TD-DFT) calculations reveal that nonemissive, deactivating excited states of ligand-to-metal charge-transfer (LMCT) character are pushed to high energies as a consequence of the strong σ-donating ability of the carbenic moieties, making the Pt(trz)2 subunit an essential structural component that enables efficient emissions from the chromophoric C∧N ligands, with potential application for the development of different Pt(IV) emitters with tunable properties.
Collapse
Affiliation(s)
- Ángela Vivancos
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|
5
|
|
6
|
Rivera C, Bacilio-Beltrán HA, Puebla-Pérez AM, Rangel-Salas II, Alvarado–Rodríguez JG, Flores-Moreno R, Velázquez- Juárez G, Peregrina-Lucano AA, Becerra-Martinez E, Valdez-Ruvalcaba J, Rubio-Garcia JE, Cortes-Llamas SA. Cis and trans platinum(II) N-heterocyclic carbene isomers: synthesis, characterization and biological activity. NEW J CHEM 2022. [DOI: 10.1039/d2nj02508f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of cis and trans geometrical isomers of platinum(II) complexes with a symmetric N-heterocyclic carbene ligand (MeNHC) is reported. These complexes were obtained from 1,3-dimethylimidazolium-2-carboxylate, a masked NHC precursor....
Collapse
|
7
|
Niroomand Hosseini F, Nabavizadeh SM, Shoara R, Dadkhah Aseman M, Abu-Omar MM. Selectivity in Competitive C sp2–C sp3 versus C sp3–C sp3 Reductive Eliminations at Pt(IV) Complexes: Experimental and Computational Approaches. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - S. Masoud Nabavizadeh
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Rahim Shoara
- Professor Rashidi Laboratory of Organometallic Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71467-13565, Iran
| | - Marzieh Dadkhah Aseman
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran 14117-13116, Iran
| | - Mahdi M. Abu-Omar
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Lettl C, Schindele F, Testolin G, Bär A, Rehm T, Brönstrup M, Schobert R, Bilitewski U, Haas R, Fischer W. Inhibition of Type IV Secretion Activity and Growth of Helicobacter pylori by Cisplatin and Other Platinum Complexes. Front Cell Infect Microbiol 2020; 10:602958. [PMID: 33392108 PMCID: PMC7775389 DOI: 10.3389/fcimb.2020.602958] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
Type IV secretion systems are protein secretion machineries that are frequently used by pathogenic bacteria to inject their virulence factors into target cells of their respective hosts. In the case of the human gastric pathogen Helicobacter pylori, the cytotoxin-associated gene (Cag) type IV secretion system is considered a major cause for severe disease, such as gastric cancer, and thus constitutes an attractive target for specific treatment options against H. pylori infections. Here, we have used a Cag type IV secretion reporter assay for screening a repurposing compound library for inhibitors targeting this system. We found that the antitumor agent cisplatin, a platinum coordination complex that kills target cells by formation of DNA crosslinks, is a potent inhibitor of the Cag type IV secretion system. Strikingly, we found that this inhibitory activity of cisplatin depends on a ligand exchange reaction which incorporates a solvent molecule (dimethylsulfoxide) into the complex, a modification which is known to be deleterious for DNA crosslinking, and for its anticancer activity. We extended our analysis to several analogous platinum complexes containing N-heterocyclic carbene, as well as DMSO or other ligands, and found varying inhibitory activities toward the Cag system which were not congruent with their DNA-binding properties, suggesting that protein interactions may cause the inhibitory effect. Inhibition experiments under varying conditions revealed effects on adherence and bacterial viability as well, and showed that the type IV secretion-inhibitory capacity of platinum complexes can be inactivated by sulfur-containing reagents and in complex bacterial growth media. Taken together, our results demonstrate DNA binding-independent inhibitory effects of cisplatin and other platinum complexes against different H. pylori processes including type IV secretion.
Collapse
Affiliation(s)
- Clara Lettl
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| | - Franziska Schindele
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| | - Giambattista Testolin
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Braunschweig, Germany
| | - Alexander Bär
- Organic Chemistry Laboratory, University Bayreuth, Bayreuth, Germany
| | - Tobias Rehm
- Organic Chemistry Laboratory, University Bayreuth, Bayreuth, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Braunschweig, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Bayreuth, Germany
| | - Ursula Bilitewski
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,German Center for Infection Research (DZIF), Hannover-Braunschweig Site, Braunschweig, Germany
| | - Rainer Haas
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| | - Wolfgang Fischer
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany.,German Center for Infection Research (DZIF), Munich Site, Munich, Germany
| |
Collapse
|
9
|
Chen C, Zhou L, Xie B, Wang Y, Ren L, Chen X, Cen B, Lv H, Wang H. Novel fast-acting pyrazole/pyridine-functionalized N-heterocyclic carbene silver complexes assembled with nanoparticles show enhanced safety and efficacy as anticancer therapeutics. Dalton Trans 2020; 49:2505-2516. [PMID: 32022055 DOI: 10.1039/c9dt04751d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study, we designed and synthesized four novel multi-nuclear silver complexes (1-4) coordinated with pyrazole- or pyridine-functionalized N-heterocyclic carbene (NHC) ligands. The crystal structures of the silver-NHC complexes were confirmed by X-ray diffraction analysis. In vitro assays showed that the silver-NHC complexes effectively killed a broad range of cancer cells after short-term drug exposure, serving as fast-acting cytotoxic agents. Of note, in cisplatin-resistant A549 cancer cells, the silver complexes were not cross-resistant with the clinically used cisplatin agent. Detailed mechanistic studies revealed that complex 2 triggered caspase-independent cell necrosis associated with intracellular reactive oxygen species (ROS) production and mitochondrial membrane potential (MMP) depletion. By exploiting a facile nano-assembly process, silver-NHC complexes 1, 2 and 4 were successfully integrated into the hydrophobic cores of amphiphilic matrices (DSPE-PEG2K), enabling systemic injection. The silver complex-loaded nanotherapeutics (1-NPs, 2-NPs, and 4-NPs) showed high safety margins with reduced systemic drug toxicities relative to cisplatin in animals. Furthermore, in a xenograft model of human colorectal cancer, the administration of the nanotherapeutics resulted in a marked inhibition of tumor progression.
Collapse
Affiliation(s)
- Chao Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China. and College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Liqian Zhou
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Binbin Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Yuchen Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Lulu Ren
- Department of Medical Oncology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Xiaona Chen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Beini Cen
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - He Lv
- College of Life Sciences, Huzhou University, Huzhou, 313000, PR China
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| |
Collapse
|
10
|
Tham MJR, Babak MV, Ang WH. PlatinER: A Highly Potent Anticancer Platinum(II) Complex that Induces Endoplasmic Reticulum Stress Driven Immunogenic Cell Death. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Max Jing Rui Tham
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapoare
| | - Maria V. Babak
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
- Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue 999077 Hong Kong SAR P. R. China
| | - Wee Han Ang
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapoare
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| |
Collapse
|
11
|
Tham MJR, Babak MV, Ang WH. PlatinER: A Highly Potent Anticancer Platinum(II) Complex that Induces Endoplasmic Reticulum Stress Driven Immunogenic Cell Death. Angew Chem Int Ed Engl 2020; 59:19070-19078. [DOI: 10.1002/anie.202008604] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Max Jing Rui Tham
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapoare
| | - Maria V. Babak
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
- Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue 999077 Hong Kong SAR P. R. China
| | - Wee Han Ang
- NUS Graduate School for Integrative Sciences and Engineering National University of Singapore 21 Lower Kent Ridge Road 119077 Singapore Singapoare
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| |
Collapse
|
12
|
Annunziata A, Amoresano A, Cucciolito ME, Esposito R, Ferraro G, Iacobucci I, Imbimbo P, Lucignano R, Melchiorre M, Monti M, Scognamiglio C, Tuzi A, Monti DM, Merlino A, Ruffo F. Pt(II) versus Pt(IV) in Carbene Glycoconjugate Antitumor Agents: Minimal Structural Variations and Great Performance Changes. Inorg Chem 2020; 59:4002-4014. [PMID: 32129608 PMCID: PMC7997382 DOI: 10.1021/acs.inorgchem.9b03683] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Indexed: 12/20/2022]
Abstract
Octahedral Pt(IV) complexes (2Pt-R) containing a glycoconjugate carbene ligand were prepared and fully characterized. These complexes are structural analogues to the trigonal bipyramidal Pt(II) species (1Pt-R) recently described. Thus, an unprecedented direct comparison between the biological properties of Pt compounds with different oxidation states and almost indistinguishable structural features was performed. The stability profile of the novel Pt(IV) compounds in reference solvents was determined and compared to that of the analogous Pt(II) complexes. The uptake and antiproliferative activities of 2Pt-R and 1Pt-R were evaluated on the same panel of cell lines. DNA and protein binding properties were assessed using human serum albumin, the model protein hen egg white lysozyme, and double stranded DNA model systems by a variety of experimental techniques, including UV-vis absorption spectroscopy, fluorescence, circular dichroism, and electrospray ionization mass spectrometry. Although the compounds present similar structures, their in-solution stability, cellular uptake, and DNA binding properties are diverse. These differences may represent the basis of their different cytotoxicity and biological activity.
Collapse
Affiliation(s)
- Alfonso Annunziata
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Angela Amoresano
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Maria Elena Cucciolito
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
- CIRCC, via Celso Ulpiani
27, 70126 Bari, Italy
| | - Roberto Esposito
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
- CIRCC, via Celso Ulpiani
27, 70126 Bari, Italy
| | - Giarita Ferraro
- Dipartimento di Chimica Ugo Schiff, Università di Firenze, Sesto Fiorentino, Florence 50019, Italy
| | - Ilaria Iacobucci
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Paola Imbimbo
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Rosanna Lucignano
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | | | - Maria Monti
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Chiara Scognamiglio
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Angela Tuzi
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Daria Maria Monti
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Antonello Merlino
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
| | - Francesco Ruffo
- Dipartimento di
Scienze Chimiche, Università di Napoli
Federico II, Complesso Universitario di Monte S. Angelo, via Cintia 21, 80126 Napoli, Italy
- CIRCC, via Celso Ulpiani
27, 70126 Bari, Italy
| |
Collapse
|