1
|
Liu N, Morimoto H, Wu F, Lv X, Xiao B, Kuzuhara D, Pan J, Qiu F, Aratani N, Shen Z, Yamada H, Xue S. Synthesis of Planar meso-Aryl Rosarins: A Reversible Antiaromatic/Aromatic Interconversion. Org Lett 2022; 24:3609-3613. [DOI: 10.1021/acs.orglett.2c01147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ningchao Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Hirofumi Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Fan Wu
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaojuan Lv
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Bentian Xiao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Daiki Kuzuhara
- Faculty of Science and Engineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hiroko Yamada
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan
| | - Songlin Xue
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
2
|
Guergueb M, Loiseau F, Molton F, Nasri H, Klein A. CO 2 to CO Electroreduction, Electrocatalytic H 2 Evolution, and Catalytic Degradation of Organic Dyes Using a Co(II) meso-Tetraarylporphyrin. Molecules 2022; 27:1705. [PMID: 35268805 PMCID: PMC8912110 DOI: 10.3390/molecules27051705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 02/05/2023] Open
Abstract
The meso-tetrakis(4-(trifluoromethyl)phenyl)porphyrinato cobalt(II) complex [Co(TMFPP)] was synthesised in 93% yield. The compound was studied by 1H NMR, UV-visible absorption, and photoluminescence spectroscopy. The optical band gap Eg was calculated to 2.15 eV using the Tauc plot method and a semiconducting character is suggested. Cyclic voltammetry showed two fully reversible reduction waves at E1/2 = -0.91 V and E1/2 = -2.05 V vs. SCE and reversible oxidations at 0.30 V and 0.98 V representing both metal-centred (Co(0)/Co(I)/Co(II)/Co(III)) and porphyrin-centred (Por2-/Por-) processes. [Co(TMFPP)] is a very active catalyst for the electrochemical formation of H2 from DMF/acetic acid, with a Faradaic Efficiency (FE) of 85%, and also catalysed the reduction of CO2 to CO with a FE of 90%. Moreover, the two triarylmethane dyes crystal violet and malachite green were decomposed using H2O2 and [Co(TMFPP)] as catalyst with an efficiency of more than 85% in one batch.
Collapse
Affiliation(s)
- Mouhieddinne Guergueb
- Faculty of Sciences of Monastir, University of Monastir, Avenue de l’Environnement, Monastir 5019, Tunisia;
| | - Frédérique Loiseau
- Département de Chimie Moléculaire (DCM), CNRS UMR 5250, Université Grenoble Alpes, F-38000 Grenoble, France; (F.L.); (F.M.)
| | - Florian Molton
- Département de Chimie Moléculaire (DCM), CNRS UMR 5250, Université Grenoble Alpes, F-38000 Grenoble, France; (F.L.); (F.M.)
| | - Habib Nasri
- Faculty of Sciences of Monastir, University of Monastir, Avenue de l’Environnement, Monastir 5019, Tunisia;
| | - Axel Klein
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institute for Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
| |
Collapse
|
3
|
Prakash K, Osterloh WR, Rathi P, Kadish KM, Sankar M. Facile synthesis of antipodal β-arylaminodibromoporphyrins through Buchwald-Hartwig C-N coupling reaction and exploring their spectral and electrochemical redox properties. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
4
|
Kumar S, Maurya YK, Kang S, Chmielewski P, Lis T, Cybińska J, Kim D, Stępień M. Porphyrin-Ryleneimide Hybrids: Tuning of Visible and Near-Infrared Absorption by Chromophore Desymmetrization. Org Lett 2020; 22:7202-7207. [PMID: 32857521 PMCID: PMC7506948 DOI: 10.1021/acs.orglett.0c02544] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Unsymmetrically fused
porphyrins containing one or two naphthalimide
subunits were prepared in modular syntheses relying on electron-rich
and electron-poor pyrrole building blocks. These new chromophores
show progressive changes in their electron-deficient character, while
retaining comparably small optical and electrochemical band gaps.
The intrinsic curvature and extended optical absorption of these systems
make them of interest as mono- and difunctional components of multichromophoric
assemblies.
Collapse
Affiliation(s)
- Sunit Kumar
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Yogesh Kumar Maurya
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Seongsoo Kang
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Piotr Chmielewski
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Tadeusz Lis
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Joanna Cybińska
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland.,PORT - Polski Ośrodek Rozwoju Technologii, ul. Stabłowicka 147, 54-066 Wrocław, Poland
| | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea
| | - Marcin Stępień
- Wydział Chemii, Uniwersytet Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
5
|
Rathi P, Ekta, Kumar S, Banerjee D, Soma VR, Sankar M. Unsymmetrical β-functionalized ‘push–pull’ porphyrins: synthesis and photophysical, electrochemical and nonlinear optical properties. Dalton Trans 2020; 49:3198-3208. [DOI: 10.1039/c9dt04252k] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new family of unsymmetrical β-TPA appended ‘push–pull’ porphyrins has been synthesized in good yield for the first time. They exhibited red shifted broad absorption spectral features with high dipole moments and tunable redox properties.
Collapse
Affiliation(s)
- Pinki Rathi
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Ekta
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Sandeep Kumar
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| | - Dipanjan Banerjee
- Advanced Centre of Research in High Energy Materials (ACRHEM)
- University of Hyderabad
- Hyderabad 500046
- India
| | - Venugopal Rao Soma
- Advanced Centre of Research in High Energy Materials (ACRHEM)
- University of Hyderabad
- Hyderabad 500046
- India
| | - Muniappan Sankar
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee 247667
- India
| |
Collapse
|