1
|
Hu M, Wang J, Tuerhong N, Zhang Z, Jing Q, Chen Z, Yang Y, Lee MH. Novel antimony phosphates with enlarged birefringence induced by lone pair cations. Dalton Trans 2024. [PMID: 38264854 DOI: 10.1039/d3dt03833e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Phosphates, whose obvious disadvantage is the relatively small birefringence, can be overcome by the introduction of post-transition metal cations containing stereochemically active lone-pair electrons. In this paper, two new compounds were successfully explored in the A-Sb-P-O system, i.e. Cs2Sb3O(PO4)3 (CsSbPO) and (NH4)2Sb4O2(H2O)(PO4)2[PO3(OH)]2 (NH4SbPOH). Transmission spectra show that CsSbPO has a surprising transmission range with a UV cutoff edge of 213 nm. First-principles calculations show that both compounds have a wide band gap (5.02 eV for CsSbPO and 5.30 eV for NH4SbPOH) and enlarged birefringence (Δn = 0.034@1064 nm for CsSbPO and Δn = 0.045@1064 nm for NH4SbPOH). The results of real-space atom-cutting investigations show that the distorted [SbOx] polyhedra originating from the asymmetric lone pair electrons give the main contribution to the total birefringence and overcome the disadvantage of small birefringence of phosphates but maintain wide transition windows.
Collapse
Affiliation(s)
- Mei Hu
- Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physical Science and Technology & Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Jialong Wang
- Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physical Science and Technology & Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Nuerbiye Tuerhong
- Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physical Science and Technology & Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Zhiyuan Zhang
- Xinjiang Laboratory of Phase Transitions and Microstructures in Condensed Matter Physics, College of Physical Science and Technology, Yili Normal University, Yining 835000, China
| | - Qun Jing
- Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physical Science and Technology & Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Zhaohui Chen
- Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physical Science and Technology & Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Yonglei Yang
- Urumqi No. 1 Senior High School, North Second Lane, Kanas Lake Road, Urumqi 830023, China
| | - Ming-Hsien Lee
- Department of Physics, Tamkang University, New Taipei City 25137, China
| |
Collapse
|
2
|
Dong W, Sun Y, Feng H, Deng D, Jiang J, Yang J, Guo W, Tang L, Kong J, Zhao J. K 2Sr 4(PO 3) 10: A Polyphosphate with Deep-UV Cutoff Edge and Enlarged Birefringence. Inorg Chem 2023; 62:16215-16221. [PMID: 37733938 DOI: 10.1021/acs.inorgchem.3c02751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
A new polyphosphate K2Sr4(PO3)10 is synthesized by a high-temperature solution method. This compound crystallizes in the triclinic space group of P1̅, consisting of the 1D infinite [PO3]∞ chains and K and Sr ions between the chains. Compared with AM2(PO3)5 (A = K, Rb, Cs; M = Ba, Pb), K2Sr4(PO3)10 exhibits a more complex [PO3]∞ chain structure and more diverse metal cationic coordination environment. More importantly, K2Sr4(PO3)10 has both a deep-UV cutoff edge (<200 nm) and a significantly enlarged birefringence. First-principles calculations indicate that the birefringence of K2Sr4(PO3)10 is 0.017 at 1064 nm, about 2 times that of RbBa2(PO3)5 (0.008 at 1064 nm), which reaches a new height among the reported mixed alkali metal and alkaline earth metal phosphate. Theoretical calculations and structural analyses show that the enlarged birefringence of K2Sr4(PO3)10 mainly originates from the [PO3]∞ chains arranged in an inverted zigzag. This discovery introduces a new strategy for devising novel phosphate deep-UV optical crystals with a large birefringence.
Collapse
Affiliation(s)
- Weimin Dong
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Yingjie Sun
- School of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Henghao Feng
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Dazheng Deng
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Jun Jiang
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Jin Yang
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Wei Guo
- School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Libin Tang
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Jincheng Kong
- Kunming Institute of Physics, Kunming 650223, P. R. China
| | - Jun Zhao
- Kunming Institute of Physics, Kunming 650223, P. R. China
| |
Collapse
|
3
|
Wu M, Feng J, Xie C, Tudi A, Chu D, Lu J, Pan S, Yang Z. From Phosphate Fluoride to Fluorophosphate: Design of Novel Ultraviolet/Deep-Ultraviolet Nonlinear Optical Materials for BePO 3F with Optical Property Enhancement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39081-39090. [PMID: 35980008 DOI: 10.1021/acsami.2c12001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fluorine-containing compounds have stimulated the exploration of ultraviolet/deep-ultraviolet nonlinear optical (NLO) materials. Alkali/alkaline-earth metal phosphates are one of the important potential systems as NLO materials, while the common small birefringence limits the phase-matching (PM) ability in the ultraviolet/deep-ultraviolet region. Herein, by applying a "fluorination synergy-induced enhancement of optical property" strategy, novel structures of phosphate fluoride/fluorophosphate in BePO3F with good thermodynamic/dynamic stability and promising NLO-related properties are discovered via performing crystal structure prediction combined with first-principles calculations. BePO3F-I-VI exhibit relatively large birefringence of 0.025, 0.048, 0.049, 0.049, 0.059, and 0.063 at 1064 nm, respectively. Simultaneously, BePO3F-I (Pc) is a new thermodynamically stable phosphate fluoride which possesses a wide band gap (Eg = 8.03 eV), large second-harmonic generation (SHG) coefficient (d11 = 0.67 pm/V, 1.7 × KDP), and the shortest PM wavelength of 292 nm. Other five thermodynamically metastable noncentrosymmetric (NCS) BePO3F structures (II-VI) belong to fluorophosphates and exhibit deep-ultraviolet PM wavelengths of 187, 183, 186, 188, and 196 nm. It reveals that the aligned nonbonding O 2p orbitals of [BeO2F2] and [PO4] units lead to a large SHG coefficient in the phosphate fluoride BePO3F-I. For fluorophosphates (BePO3F-II-VI), the synergy of [BeO3] planar units and [PO3F] units induces relatively large birefringence. Our research results provide an idea for exploring novel high-performance NLO materials.
Collapse
Affiliation(s)
- Mengfan Wu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junwei Feng
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
| | - Congwei Xie
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
| | - Abudukadi Tudi
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongdong Chu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Lu
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
| | - Shilie Pan
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- Research Center for Crystal Materials; CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Science, 40-1 South Beijing Road, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Influence of Isostructural Substitution of Gadolinium By Europium(III) on the Luminescent Properties of K3Gd(PO4)2:Eu. THEOR EXP CHEM+ 2021. [DOI: 10.1007/s11237-021-09680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Dang J, Mei D, Wu Y, Lin Z. A comprehensive survey on nonlinear optical phosphates: Role of multicoordinate groups. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213692] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Zhang W, Wei Z, Yang Z, Pan S. Two new ammonium/alkali-rare earth metal difluorophosphates ALa(PO 2F 2) 4 (A = NH 4 and K) with moderate birefringence and short cutoff edges. Dalton Trans 2020; 49:11591-11596. [PMID: 32776048 DOI: 10.1039/d0dt01951h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Herein, two new ammonium/alkali-rare-earth metal fluorophosphates ALa(PO2F2)4 (A = NH4 and K) have been successfully obtained via a facile route. The introduction of F- anions with high electronegativity and non-π-conjugated species [PO2F2]- was found in the title compounds. Different from the [PO4]3- unit in phosphates, the (PO2F2)- group retains the merit of wide UV transmittance in phosphates; meanwhile, it has large polarizability anisotropy, and theoretical calculation shows that the calculated birefringences are 0.023 and 0.019 for KLa(PO2F2)4 and NH4La(PO2F2)4, respectively. More importantly, this work will contribute to the structural and functional diversity of phosphate chemistry by the exploration of the fascinating difluorophosphates.
Collapse
Affiliation(s)
- Wenyao Zhang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonglei Wei
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China. and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Yang
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.
| | - Shilie Pan
- CAS Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical Institute of Physics & Chemistry, CAS, Xinjiang Key Laboratory of Electronic Information Materials and Devices, 40-1 South Beijing Road, Urumqi 830011, China.
| |
Collapse
|