1
|
Kronawitter SM, Kieslich G. The wondrous world of ABX 3 molecular perovskites. Chem Commun (Camb) 2024; 60:11673-11684. [PMID: 39291797 DOI: 10.1039/d4cc03833a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The substitution of atoms with molecular building blocks to form hybrid organic-inorganic networks has been an important research theme for several decades. ABX3 molecular perovskites (MolPs) are a subclass of hybrid networks, adopting the perovskite structure with cationic and anionic molecules on the A-site and X-site. MolPs such as ((CH3)2NH2)Zn(HCOO)3 or ((n-C3H7)4N)Mn(C2N3)3 show a range of fascinating structure-chemical properties, including temperature-driven phase transitions that include a change of polarity as interesting for ferroelectrics, pressure-driven order-disorder phase transitions as interesting for barocaloric solid-state refrigeration, and most recently, melting-behaviour before decomposition with subsequent glass formation after cooling. In this feature article, we take a more personal perspective, overviewing the field's current state and outlining future directions. We start by comparing the MolPs' structural chemistry with their inorganic parents, a comparison that helps us identify opportunities for material design. After discussing the MolPs' potential as barocalorics, ferroelectrics, and in the area of glasses, we outline some challenges that lie ahead. Beyond their relevance as a hybrid analogue of inorganic perovskites, we find that MolPs' chemical parameter space provides exciting opportunities for systematically developing design guidelines for functional materials.
Collapse
Affiliation(s)
- Silva M Kronawitter
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Gregor Kieslich
- Department of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| |
Collapse
|
2
|
Bodylska W, Fandzloch M, Szukiewicz R, Lukowiak A. Cation-Exchange in Metal-Organic Framework as a Strategy to Obtain New Material for Ascorbic Acid Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4480. [PMID: 36558333 PMCID: PMC9786631 DOI: 10.3390/nano12244480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Ascorbic acid (AA) is an important biomolecule, the deficiency or maladjustment of which is associated with the symptoms of many diseases (e.g., cardiovascular disease or cancer). Therefore, there is a need to develop a fluorescent probe capable of detecting AA in aqueous media. Here, we report the synthesis, structural, and spectroscopic characterization (by means of, e.g., XRD, XPS, IR and Raman spectroscopy, TG, SEM, and EDS analyses), as well as the photoluminescent properties of a metal-organic framework (MOF) based on Cu2+ and Eu3+ ions. The ion-exchange process of the extraframework cation in anionic Cu-based MOF is proposed as an appropriate strategy to obtain a new material with a nondisturbed structure and a sensitivity to interaction with AA. Accordingly, a novel Eu[Cu3(μ3-OH)(μ3-4-carboxypyrazolato)3] compound for the selective optical detection of AA with a short detection time of 5 min is described.
Collapse
Affiliation(s)
- Weronika Bodylska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - Marzena Fandzloch
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - Rafał Szukiewicz
- Faculty of Physics and Astronomy, University of Wrocław, pl. M. Borna 9, 50-204 Wrocław, Poland
| | - Anna Lukowiak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| |
Collapse
|
3
|
Stefańska D. Effect of Organic Cation on Optical Properties of [A]Mn(H 2POO) 3 Hybrid Perovskites. Molecules 2022; 27:8953. [PMID: 36558085 PMCID: PMC9784195 DOI: 10.3390/molecules27248953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Hybrid organic-inorganic compounds crystallizing in a three-dimensional (3D) perovskite-type architecture have attracted considerable attention due to their multifunctional properties. One of the most intriguing groups is perovskites with hypophosphite linkers. Herein, the optical properties of six hybrid hypophosphite perovskites containing manganese ions are presented. The band gaps of these compounds, as well as the luminescence properties of the octahedrally coordinated Mn2+ ions associated with the 4T1g(G) → 6A1g(S) transition are shown to be dependent on the organic cation type and Goldschmidt tolerance factor. Thus, a correlation between essential structural features of Mn-based hybrid hypophosphites and their optical properties was observed. Additionally, the broad infrared luminescence of the studied compounds was examined for potential application in an indoor lighting system for plant growth.
Collapse
Affiliation(s)
- Dagmara Stefańska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
4
|
Narrowing the tolerance factor limits for hybrid organic-inorganic dicyanamide-perovskites. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Structural, Thermal and Functional Properties of a Hybrid Dicyanamide-Perovskite Solid Solution. CRYSTALS 2022. [DOI: 10.3390/cryst12060860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Solid-State Chemistry, a well-known route to obtain new compounds and modulate their properties is the formation of solid solutions, a strategy widely exploited in the case of classical inorganic perovskites but relatively unexplored among emergent hybrid organic–inorganic perovskites (HOIPs). In this work, to the best of our knowledge, we present the first dicyanamide-perovskite solid solution of [TPrA][Co0.5Ni0.5(dca)3] and study its thermal, dielectric and optical properties, comparing them with those of the parent undoped compounds [TPrA][Co(dca)3] and [TPrA][Ni(dca)3]. In addition, we show that the prepared doped compound can be used as a precursor that, by calcination, allows CNTs with embedded magnetic Ni:Co alloy nanoparticles to be obtained through a fast and much simpler synthetic route than other complex CVD or arc-discharge methods used to obtain this type of material.
Collapse
|
6
|
García-Ben J, McHugh LN, Bennett TD, Bermúdez-García JM. Dicyanamide-perovskites at the edge of dense hybrid organic–inorganic materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
de Medeiros CS, Ptak M, Gągor A, Sieradzki A. Structural phase transitions in novel hydrogen-bonded cyanide-based crystal of [C4H8NH2]2[(H3O)Co(CN)6]. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132143] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Maczka M, Gągor A, Stefanska D, Zaręba JK, Pikul A. Structural, magnetic and photoluminescent properties of new hybrid hypophosphites: discovery of the first noncentrosymmetric and two cobalt-based members. Dalton Trans 2022; 51:9094-9102. [DOI: 10.1039/d2dt01212j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hybrid organic-inorganic perovskites comprising hypophosphite ligands are emerging functional materials exhibiting magnetic, photoluminescence, negative thermal expansion and negative linear compressibility behaviour. This work reports five novel hypophosphite perovskites, [A]M(H2POO)3 (A=...
Collapse
|
9
|
Shao T, Gong JM, Liu J, Han LJ, Chen M, Jia Q, Fu DW, Lu HF. 2D lead-free organic–inorganic hybrid exhibiting dielectric and structural phase transition at higher temperatures. CrystEngComm 2022. [DOI: 10.1039/d2ce00541g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel switchable molecular dielectric material [3-3-difluorocyclobutylammonium]2CdCl4 was synthesized. It shows a reversible phase transition at 353.95 K and rapid switching and reversibility between high and low dielectric states for several cycles.
Collapse
Affiliation(s)
- Ting Shao
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Jun Miao Gong
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Jia Liu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Li Jun Han
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Ming Chen
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, P.R. China
| | - Qiangqiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Da Wei Fu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| | - Hai-Feng Lu
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, People's Republic of China
| |
Collapse
|
10
|
Shao DS, Sang L, Kong YR, Deng ZR, Luo HB, Tian ZF, Ren XM. Tunable thermotropic phase transition triggering large dielectric response and superionic conduction in lead halide perovskites. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01650h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lead halide perovskites show tunable structural phase transition, accompanied by large dielectric response and superionic conduction.
Collapse
Affiliation(s)
- Dong-Sheng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Lei Sang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ya-Ru Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zheng-Rong Deng
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong-Bin Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zheng-Fang Tian
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University, Huanggang 438000, P. R. China
| | - Xiao-Ming Ren
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
11
|
Zou K, Zhang T, Ding K, Cheng SN, Zhang Y, Ge JZ, Fu DW. Solvent-induced reversible high-temperature phase transition in crown ether clathrates. NEW J CHEM 2022. [DOI: 10.1039/d2nj00642a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The phase transitions of crown ether complexes with molecular motor motion triggered by the solvent-induced effect are reported.
Collapse
Affiliation(s)
- Ke Zou
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Tie Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Kun Ding
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Sai-Nan Cheng
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Yi Zhang
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Jia-Zhen Ge
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
12
|
Mączka M, Stefańska D, Gągor A, Pikul A. The cation-dependent structural, magnetic and optical properties of a family of hypophosphite hybrid perovskites. Dalton Trans 2021; 51:352-360. [PMID: 34897339 DOI: 10.1039/d1dt03382d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypophosphite hybrid perovskites have recently received widespread attention due to their diverse structural and magnetic properties, negative thermal expansion and photoluminescence behaviour. Herein, we report two new three-dimensional hybrid perovskites containing unusually large organic cations, pyrrolidinium and 2-hydroxyethylammonium. We report the crystal structures of these new manganese-hypophosphite frameworks and their magnetic and optical properties. We also report the magnetic and optical properties of two previously discovered analogues, dimethylammonium and imidazolium manganese hypophosphites. Both new compounds crystallize in a monoclinic structure, space group P21/n, with ordered organic cations at room temperature. Magnetic studies show that all studied compounds are examples of canted antiferromagnets but the weak ferromagnetic contribution and the ordering temperature are significantly modulated by the type of organic cation located in the cavity of the framework. We discuss the origin of this behaviour. Upon ultraviolet excitation, all compounds exhibit broadband photoluminescence associated with the 4T1g(G) → 6A1g(S) transition of octahedrally coordinated Mn2+ ions. The position of the PL band depends on the type of organic cation, being the most blue-shifted for the imidazolium analogue (646 nm) and the most red-shifted for the pyrrolidinium counterpart (689 nm). The most interesting property of the studied hypophosphites is, however, the strong temperature dependence of the photoluminescence intensity, suggesting the possible application of these compounds in non-contact optical thermometry.
Collapse
Affiliation(s)
- Mirosław Mączka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland.
| | - Dagmara Stefańska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland.
| | - Anna Gągor
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland.
| | - Adam Pikul
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okólna 2, 50-422 Wrocław, Poland.
| |
Collapse
|
13
|
Ptak M, Sieradzki A, Šimėnas M, Maczka M. Molecular spectroscopy of hybrid organic–inorganic perovskites and related compounds. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214180] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Burger S, Grover S, Butler KT, Boström HLB, Grau-Crespo R, Kieslich G. Tilt and shift polymorphism in molecular perovskites. MATERIALS HORIZONS 2021; 8:2444-2450. [PMID: 34870297 DOI: 10.1039/d1mh00578b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular perovskites, i.e. ABX3 coordination polymers with a perovskite structure, are a chemically diverse material platform for studying fundamental and applied materials properties such as barocalorics and improper ferroelectrics. Compared to inorganic perovskites, the use of molecular ions on the A- and X-site of molecular perovskites leads to new geometric and structural degrees of freedom. In this work we introduce the concept of tilt and shift polymorphism, categorising irreversible perovskite-to-perovskite phase transitions in molecular perovskites. As a model example we study the new molecular perovskite series [(nPr)3(CH3)N]M(C2N3)3 with M = Mn2+, Co2+, Ni2+, and nPr = n-propyl, where different polymorphs crystallise in the perovskite structure but with different tilt systems depending on the synthetic conditions. Tilt and shift polymorphism is a direct ramification of the use of molecular building units in molecular perovskites and as such is unknown for inorganic perovskites. Given the role of polymorphism in materials science, medicine and mineralogy, and more generally the relation between physicochemical properties and structure, the concept introduced herein represents an important step in classifying the crystal chemistry of molecular perovskites and in maturing the field.
Collapse
Affiliation(s)
- Stefan Burger
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| | - Shivani Grover
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, UK.
| | - Keith T Butler
- Rutherford Appleton Laboratory, Scientific Computing Department (SciML), Didcot OX11 0QX, UK
| | - Hanna L B Boström
- Max-Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Ricardo Grau-Crespo
- Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6DX, UK.
| | - Gregor Kieslich
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany.
| |
Collapse
|
15
|
Mączka M, Ptak M, Trzebiatowska M, Kucharska E, Hanuza J, Pałka N, Czerwińska E. THz, Raman, IR and DFT studies of noncentrosymmetric metal dicyanamide frameworks comprising benzyltrimethylammonium cations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119416. [PMID: 33440286 DOI: 10.1016/j.saa.2020.119416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
We report density functional theory (DFT) studies of vibrational modes for benzyltrimethylammonium cations (BeTriMe+) as well as THz, IR and Raman studies of [BeTriMe][M(dca)3(H2O)] (dca = N(CN)2-, dicyanamide; M = Mn2+, Co2+, Ni2+) and their anhydrous analogues. These studies show that the anhydrous BeTriMeMn and BeTriMeNi have the same or very similar structures and loss of water molecules leads to significant changes in the metal-dicyanamide frameworks. In particular, the number of dca modes decreases, suggesting increase of crystal symmetry, probablly related with decrease in the number of non-equivalent dca bridges from two to one. Although it is possible that dehydration leads to a replacement of the coordinate Mn-O (Ni-O) bonds by Mn-N (Ni-N) bonds, wherein N atoms come from the C≡N groups of previously non-bridged dca units, reversibility of the dehydration process indicates that such new bonds are either not formed or are very weak. The anhydrous Mn and Ni compounds undergo similar reversible phase transitions to lower symmetry phases. The driving force for these transitions is most likely ordering of dca linkers but this process is accompanied by weak distortion of the metal-dicyanamide frameworks. In the case of BeTriMeCo, the loss of water molecules also leads to significant changes in the cobalt-dicyanamide framework. However, the structure of this analogue is different from the structures of the Mn and Ni counterparts, the number of unique dca linkers is preserved and the dehydration process is irreversible, suggesting more drastic rearrangement of the metal-dicynamide framework.
Collapse
Affiliation(s)
- M Mączka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - M Ptak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - M Trzebiatowska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - E Kucharska
- Department of Bioorganic Chemistry, Faculty of Production Engineering, University of Economics and Business, 118/120 Komandorska str., 53-345 Wrocław, Poland
| | - J Hanuza
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland
| | - N Pałka
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
| | - E Czerwińska
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
| |
Collapse
|
16
|
Trzebiatowska M. The spectroscopic study of phase transitions in the series of cyanide perovskites. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118957. [PMID: 32980757 DOI: 10.1016/j.saa.2020.118957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The series of MeA2KFe(CN)6, where MeA = CH3NH3+, (CH3)2NH2+, (CH3)3NH+ and (CH3)4N+, has been studied by IR and Raman spectroscopy as the function of temperature in order to elucidate the mechanisms of the phase transitions. The order-disorder process has been confirmed in all cases. Different models have been proposed based on the dynamic effects observed in the spectra. The crystal containing (CH3)2NH2+ cations constitutes a model with melt-like thermal behavior and strongly temperature-influenced hydrogen bonding. In the case of sample with (CH3)4N+ an unperturbed rotation of these cations is observed, while in the crystals with methyl- and trimethylammonium cations the hydrogen bonds acting as positional stabilizers prevent the organic cation from a completely free motion. Additionally, the statistical disorder of dimethyl- and trimethylammonium cations has been confirmed by the thermal evolution of the FWHM of the related bands.
Collapse
Affiliation(s)
- Monika Trzebiatowska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna Str. 2, 50-422 Wrocław, Poland.
| |
Collapse
|
17
|
Mączka M, Gągor A, Zaręba JK, Trzebiatowska M, Stefańska D, Kucharska E, Hanuza J, Pałka N, Czerwińska E, Sieradzki A. Benzyltrimethylammonium cadmium dicyanamide with polar order in multiple phases and prospects for linear and nonlinear optical temperature sensing. Dalton Trans 2021; 50:10580-10592. [PMID: 34269363 DOI: 10.1039/d1dt01675j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Coordination polymers with multiple non-centrosymmetric phases have sparked substantial research efforts in the materials community. We report the synthesis and properties of a hitherto unknown cadmium dicyanamide coordination polymer comprising benzyltrimethylammonium cations (BeTriMe+). The room-temperature (RT) crystal structure of [BeTriMe][Cd(N(CN)2)3] (BeTriMeCd) is composed of Cd centers linked together by triple dca-bridges to form one-dimensional chains with BeTriMe+ cations located in void spaces between the chains. The structure is polar, the space group is Cmc21, and the spontaneous polarization in the c-direction is induced by an arrangement of BeTriMe+ dipoles. BeTriMeCd undergoes a second-order phase transition (PT) at T1 = 268 K to a monoclinic polar phase P21. Much more drastic structural changes occur at the first-order PT observed in DSC at T2 = 391 K. Raman data prove that the PT at T2 leads to extensive rearrangement of the Cd-dca coordination sphere and pronounced disorder of both dca and BeTriMe+. On cooling, the HT polymorph transforms at T3 = 266 K to another phase of unknown symmetry. Temperature-resolved second harmonic generation (TR-SHG) studies at 800 nm confirm the structural non-centrosymmetry of all the phases detected. Optical studies indicate that BeTriMeCd exhibits at low temperatures an intense emission under 266 nm excitation. Strong temperature dependence of both one-photon excited luminescence and SHG response allowed for the demonstration of two disparate modes of optical thermometry for a single material. One is the classic ratiometric luminescence thermometry employing linear excitation in the ultraviolet region while the other is single-band SHG thermometry, a thus far unprecedented subtype of nonlinear optical thermometry. Thus, BeTriMeCd is a rare example of a dicyanamide framework exhibiting polar order, SHG activity, photoluminescence properties and linear and nonlinear optical temperature sensing capability.
Collapse
Affiliation(s)
- Mirosław Mączka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - Anna Gągor
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - Jan K Zaręba
- Advanced Materials Engineering and Modeling Group, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Monika Trzebiatowska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - Dagmara Stefańska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - Edyta Kucharska
- Department of Bioorganic Chemistry, Faculty of Production Engineering, University of Economics and Business, 118/120 Komandorska str., 53-345 Wrocław, Poland
| | - Jerzy Hanuza
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wrocław, Poland.
| | - Norbert Pałka
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
| | - Elżbieta Czerwińska
- Institute of Optoelectronics, Military University of Technology, S. Kaliskiego 2, 00-908 Warsaw, Poland
| | - Adam Sieradzki
- Department of Experimental Physics, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
18
|
Wang YZ, Zhang ZX, Su CY, Zhang T, Fu DW, Zhang Y. A-site cation with high vibrational motion in ABX3 perovskite effectively induces dielectric phase transition. Dalton Trans 2021; 50:3841-3847. [DOI: 10.1039/d0dt04415f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hybrid perovskite material with dielectric phase transition obtained by the introduction of a moving group.
Collapse
Affiliation(s)
- Yu-Zhen Wang
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P.R. China
| | - Zhi-Xu Zhang
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P.R. China
| | - Chang-Yuan Su
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P.R. China
| | - Tie Zhang
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P.R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P.R. China
| | - Yi Zhang
- Ordered Matter Science Research Center
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics
- Southeast University
- Nanjing 211189
- P.R. China
| |
Collapse
|
19
|
Mączka M, Stefańska D, Ptak M, Gągor A, Pikul A, Sieradzki A. Cadmium and manganese hypophosphite perovskites templated by formamidinium cations: dielectric, optical and magnetic properties. Dalton Trans 2021; 50:2639-2647. [DOI: 10.1039/d0dt03995k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The first cadmium hypophosphite perovskite exhibiting reddish-orange emission, glass-like behaviour and order–disorder phase transition.
Collapse
Affiliation(s)
- Mirosław Mączka
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-422 Wrocław
- Poland
| | - Dagmara Stefańska
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-422 Wrocław
- Poland
| | - Maciej Ptak
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-422 Wrocław
- Poland
| | - Anna Gągor
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-422 Wrocław
- Poland
| | - Adam Pikul
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-422 Wrocław
- Poland
| | - Adam Sieradzki
- Department of Experimental Physics
- Wrocław University of Science and Technology
- Wrocław
- Poland
| |
Collapse
|
20
|
Stefańska D, Bondzior B, Vu THQ, Grodzicki M, Dereń PJ. Temperature sensitivity modulation through changing the vanadium concentration in a La 2MgTiO 6:V 5+,Cr 3+ double perovskite optical thermometer. Dalton Trans 2021; 50:9851-9857. [PMID: 34195737 DOI: 10.1039/d1dt00911g] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To fulfil the requirements of operating at low temperature in a harsh environment, the investigation on optical thermometers plays an increasingly important role. In this work, the influence of vanadium concentration on the capability of temperature readout by La2MgTiO6:V5+,Cr3+ luminescent thermometers was investigated for the first time. The presence of V3+ and V5+ was verified by XPS and absorption measurements. In the emission spectra, a blue-green emission region was assigned to both host and V5+ emission. Moreover, a spin-forbidden emission of Cr3+ ions was also detected. Vanadium ions in the +3 oxidation state do not exhibit luminescence, but play a role as a charge compensator. The highest emission intensity was obtained from the sample doped with 0.1% V. Besides, with increasing vanadium concentration, a redshift in the maximum position of the spectrum was observed corresponding to a movement from the greenish blue to yellowish green region in the CIE1931. It was shown that the relative sensitivity (Sr) and the temperature operating range can be easily modified by changing the concentration of vanadium ions. In particular, the outstanding relative sensitivities of 1.71% K-1 (at 187 K) and 1.96% K-1 (at 165 K) obtained from La2MgTiO6:0.1%V5+,Cr3+ and La2MgTiO6:0.05%V5+,Cr3+ demonstrated the enormous potential of this material for thermal sensing application.
Collapse
Affiliation(s)
- Dagmara Stefańska
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Wroclaw, Poland.
| | - Bartosz Bondzior
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Wroclaw, Poland.
| | - Thi Hong Quan Vu
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Wroclaw, Poland.
| | - Miłosz Grodzicki
- Łukasiewicz Research Network - PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław, Poland and Institute of Experimental Physics, University of Wrocław, pl. M. Borna 9, Wrocław, Poland
| | - Przemysław J Dereń
- W. Trzebiatowski Institute of Low Temperature and Structural Research of the Polish Academy of Sciences, Wroclaw, Poland.
| |
Collapse
|
21
|
Jiang JY, Xu Q, Ma JJ, Gong ZX, Shi C, Zhang Y. Above room-temperature dielectric switching and semiconducting properties of a layered organic-inorganic hybrid compound: (C 6H 12N) 2Pb(NO 3) 4. Dalton Trans 2020; 49:16860-16865. [PMID: 33179670 DOI: 10.1039/d0dt03206a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The well-studied star compound, CH3NH3PbI3, has attracted plenty of attention because of its remarkable optical and electrical properties. Consequently, new switching multifunctional hybrid compounds can be widely used in many fields such as solar cells, light-emitting diodes, optical data storage and so on. Therefore, switching multifunctional hybrid compounds with dielectric and semiconducting properties simultaneously will also find roles in the next generation of optoelectronic coupling materials. In fact, discovering an effective method to synthesize (multi)functional hybrid materials remains a pressing challenge. Thanks to the "quasi-spherical theory" proposed by Xiong et al., we used 7-azabicyclo[2.2.1]heptane as the quasi-spherical cation to construct molecule-based crystalline materials that exhibit responsive properties. Then, we tried to exploit the knowledge of crystal engineering and coordination chemistry to explain (multi)functional molecular materials. A layered organic-inorganic hybrid compound, (C6H12N)2Pb(NO3)4 (1), was grown and its dielectric switching property and semiconducting behaviour were investigated. Insights from differential scanning calorimetry measurements, variable-temperature X-ray structural studies, and dielectric spectroscopy revealed the origin of the phase transition, which is related to the motion of the organic ammonium and inorganic framework in solid-state crystals. Furthermore, 1 is also a wide bandgap semiconductor with an optical bandgap of 3.53 eV. The realization of switching and semiconducting properties simultaneously in layered Pb-based perovskites has a great significance toward research into hybrid compounds and the development of dielectric-optoelectronic integrated materials.
Collapse
Affiliation(s)
- Jia-Ying Jiang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 330000, Jiangxi, China.
| | | | | | | | | | | |
Collapse
|
22
|
Ciupa-Litwa A, Ptak M, Kucharska E, Hanuza J, Mączka M. Vibrational Properties and DFT Calculations of Perovskite-Type Methylhydrazinium Manganese Hypophosphite. Molecules 2020; 25:E5215. [PMID: 33182446 PMCID: PMC7664875 DOI: 10.3390/molecules25215215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022] Open
Abstract
Recently discovered hybrid perovskites based on hypophosphite ligands are a promising class of compounds exhibiting unusual structural properties and providing opportunities for construction of novel functional materials. Here, we report for the first time the detailed studies of phonon properties of manganese hypophosphite templated with methylhydrazinium cations ([CH3NH2NH2][Mn(H2PO2)3]). Its room temperature vibrational spectra were recorded for both polycrystalline sample and a single crystal. The proposed assignment based on Density Functional Theory (DFT) calculations of the observed vibrational modes is also presented. It is worth noting this is first report on polarized Raman measurements in this class of hybrid perovskites.
Collapse
Affiliation(s)
- Aneta Ciupa-Litwa
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wrocław, Poland; (A.C.-L.); (J.H.); (M.M.)
| | - Maciej Ptak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wrocław, Poland; (A.C.-L.); (J.H.); (M.M.)
| | - Edyta Kucharska
- Department of Bioorganic Chemistry, Faculty of Production Engineering, University of Economics and Business, 118/120 Komandorska str., 53-345 Wrocław, Poland;
| | - Jerzy Hanuza
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wrocław, Poland; (A.C.-L.); (J.H.); (M.M.)
| | - Mirosław Mączka
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422 Wrocław, Poland; (A.C.-L.); (J.H.); (M.M.)
| |
Collapse
|
23
|
Wu LN, He MQ, Li MX, Nfor EN, Wang ZX. Inorganic-organic hybrid materials with methylviologen dication confined in magnetic hosts: Synthesis, crystal structures and magnetic properties. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Abstract
A survey of the rigid unit modes in molecular perovskites is presented, showing how the prevalence of conventional tilts, unconventional tilts and columnar shifts vary across the different classes of molecular perovskites.
Collapse
Affiliation(s)
- Hanna L. B. Boström
- Department of Inorganic Chemistry
- Ångström Laboratory
- Uppsala Universitet
- 751 21 Uppsala
- Sweden
| |
Collapse
|
25
|
Burger S, Kronawitter S, Boström HLB, Zaręba JK, Kieslich G. A new polar perovskite coordination network with azaspiroundecane as A-site cation. Dalton Trans 2020; 49:10740-10744. [DOI: 10.1039/d0dt01968b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We report a new polar ABX3 perovskite coordination network based on azaspiroundecane as A-site cation and dicyanamide as X-site anion.
Collapse
Affiliation(s)
- Stefan Burger
- Technical University of Munich
- Department of Chemistry
- Garching
- Germany
| | - Silva Kronawitter
- Technical University of Munich
- Department of Chemistry
- Garching
- Germany
| | - Hanna L. B. Boström
- Department of Inorganic Chemistry
- Ångström Laboratory
- Uppsala Universitet
- Box 538
- 751 21 Uppsala
| | - Jan K. Zaręba
- Advanced Materials Engineering and Modelling Group
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Gregor Kieslich
- Technical University of Munich
- Department of Chemistry
- Garching
- Germany
| |
Collapse
|
26
|
Mączka M, Gągor A, Pikul A, Stefańska D. Novel hypophosphite hybrid perovskites of [CH3NH2NH2][Mn(H2POO)3] and [CH3NH2NH2][Mn(H2POO)2.83(HCOO)0.17] exhibiting antiferromagnetic order and red photoluminescence. RSC Adv 2020; 10:19020-19026. [PMID: 35518310 PMCID: PMC9053939 DOI: 10.1039/d0ra03397a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/12/2020] [Indexed: 11/21/2022] Open
Abstract
Hybrid perovskites based on hypophosphite ligands constitute an emerging family of compounds exhibiting unusual structures and offering a platform for construction of novel functional materials. We report the synthesis, crystal structure, and magnetic and optical properties of novel undoped and HCOO−-doped manganese hypophosphite frameworks templated by methylhydrazinium cations. The undoped compound crystallizes in a three-dimensional perovskite-like orthorhombic structure, space group Pnma, with ordered organic cations located in windows between the perovskite cages expanding along the a-direction. Both conventional anti-phase tilting, unconventional in-phase tilting and columnar shifts in the a-direction are present. Doping with HCOO− ions has a insignificant influence on the crystal structure but leads to a decrease of the unit cell volume. Magnetic studies indicate that these compounds order antiferromagnetically at TN = 6.5 K. Optical studies indicate that they exhibit red photoluminescence under 266 nm excitation with the activation energy for thermal quenching of 98 and 65 meV for the undoped and doped sample, respectively. For the undoped sample, the emission lifetime reaches 5.05 ms at 77 K but it decreases to 62.26 μs at 300 K. The low value of the activation energy and huge temperature dependence of photoluminescence intensity suggest a high potential of these hypophosphites for non-contact temperature sensing. The first perovskite-type hypophosphite-linked dense metal–organic framework exhibiting red emission and antiferromagnetic order at 6.5 K.![]()
Collapse
Affiliation(s)
- Mirosław Mączka
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-950 Wrocław 2
- Poland
| | - Anna Gągor
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-950 Wrocław 2
- Poland
| | - Adam Pikul
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-950 Wrocław 2
- Poland
| | - Dagmara Stefańska
- Institute of Low Temperature and Structure Research
- Polish Academy of Sciences
- 50-950 Wrocław 2
- Poland
| |
Collapse
|