1
|
Gholami Shamami H, Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. High-performance hybrid supercapacitors enabled by CoTe@CoFeTe double-shelled nanocubes. NANOSCALE 2025; 17:4591-4602. [PMID: 39807017 DOI: 10.1039/d4nr03996c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Metal tellurides, known for their superior electrical conductivity and excellent electrochemical properties, are promising candidates for supercapacitor applications. This study introduces a novel method involving a metal-organic framework hybrid to synthesize CoTe@CoFeTe double-shelled nanocubes. Initially, zeolitic imidazolate framework-67 (ZIF67) and CoFe Prussian blue analog (PBA) nanocubes are synthesized through an anion-exchange reaction with [Fe(CN)6]3- ions. Subsequent annealing treatment converts these structures into Co3O4@CoFe2O4 double-shelled nanocubes. These are then subjected to a tellurization process to form CoTe@CoFeTe, which exhibits outstanding supercapacitive performance. Notably, the CoTe@CoFeTe based-electrode demonstrates superior supercapacitive properties compared to their oxide counterparts, mainly due to the introduction of tellurium ions. These nanocubes show an impressive specific capacity of 1312 C g-1 at a current density of 1 A g-1 and maintain 92.35% of their capacity after 10 000 charging cycles, highlighting their durability and the synergistic effect of the mixed metals and their hollow structure. Furthermore, when used as the positive electrode material in a hybrid supercapacitor with activated carbon (AC), the device achieves an energy density of 64.66 W h kg-1 and retains 88.25% of its capacity after 10 000 cycles. These results confirm the potential of the developed material for advanced supercapacitor applications.
Collapse
Affiliation(s)
- Helya Gholami Shamami
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
| | - Akbar Mohammadi Zardkhoshoui
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran 3313193685, Iran.
| | | |
Collapse
|
2
|
Dehghanpour Farashah D, Abdollahi M, Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Exploring the potential of CuCoFeTe@CuCoTe yolk-shelled microrods in supercapacitor applications. NANOSCALE 2024; 16:8650-8660. [PMID: 38618947 DOI: 10.1039/d4nr00076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Driven by their excellent conductivity and redox properties, metal tellurides (MTes) are increasingly capturing the spotlight across various fields. These properties position MTes as favorable materials for next-generation electrochemical devices. Herein, we introduce a novel, self-sustained approach to creating a yolk-shelled electrode material. Our process begins with a metal-organic framework, specifically a CoFe-layered double hydroxide-zeolitic imidazolate framework67 (ZIF67) yolk-shelled structure (CFLDH-ZIF67). This structure is synthesized in a single step and transformed into CuCoLDH nanocages. The resulting CuCoFeLDH-CuCoLDH yolk-shelled microrods (CCFLDH-CCLDHYSMRs) are formed through an ion-exchange reaction. These are then converted into CuCoFeTe-CuCoTe yolk-shelled microrods (CCFT-CCTYSMRs) by a tellurization reaction. Benefiting from their structural and compositional advantages, the CCFT-CCTYSMR electrode demonstrates superior performance. It exhibits a fabulous capacity of 1512 C g-1 and maintains an impressive 84.45% capacity retention at 45 A g-1. Additionally, it shows a remarkable capacity retention of 91.86% after 10 000 cycles. A significant achievement of this research is the development of an activated carbon (AC)||CCFT-CCTYSMR hybrid supercapacitor. This supercapacitor achieves a good energy density (Eden) of 63.46 W h kg-1 at a power density (Pden) of 803.80 W kg-1 and retains 88.95% of its capacity after 10 000 cycles. These results highlight the potential of telluride-based materials in advanced energy storage applications, marking a step forward in the development of high-energy, long-life hybrid supercapacitors.
Collapse
|
3
|
Zhang L, Sun J, Li F, Cao Z, Lang J, Li S. Manganese-cobalt hydroxide nanosheets anchored on a hollow sulfur-doped bimetallic MOF for high-performance supercapacitors and the hydrogen evolution reaction in alkaline media. Dalton Trans 2024; 53:1274-1283. [PMID: 38112238 DOI: 10.1039/d3dt03919f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Nonmetallic doping and in situ growth techniques for designing electrode materials with excellent electrocatalytic activity are effective strategies to enhance the electrochemical performance. Bifunctional electrode materials for supercapacitors (SCs) and the hydrogen evolution reaction (HER) have attracted great interest due to their potential applications in green energy storage and conversion. Herein, the bimetallic MnCo LDH is anchored on a hollow sulfur (S)-doped MnCo-MOF-74 surface, forming a poplar flower-like 3D composite which is used for SCs and the HER in alkaline media. The fabricated S-MnCo-MOF-74@MnCo LDH/NF electrode exhibits a favorable specific capacitance of 1875.4 F g-1 at 1 A g-1 and steady long-term cycling performance. Moreover, the assembled HSC using S-MnCo-MOF-7@MnCo LDH/NF as the cathode material and active carbon (AC) as the anode material shows 546.4 F g-1 capacitance (1 A g-1) with a maximum energy density of 58 W h kg-1 at 14 000 W kg-1 power density. As an electrocatalyst, S-MnCo-MOF-7@MnCo LDH/NF exhibits excellent HER properties with a small Tafel slope of 128.9 mV dec-1 a low overpotential of 197 mV at 10 mA cm-2 and durable performance for 10 hours in alkaline media. The present work provides insights into understanding and designing active electrode materials for stable hydrogen evolution and high-performing supercapacitors in an alkaline environment.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Jingyu Sun
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Fengbo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Zhen Cao
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Jiaxin Lang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Shaobin Li
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
4
|
Nazari M, Noori A, Rahmanifar MS, El-Kady MF, Hassani N, Neek-Amal M, Kaner RB, Mousavi MF. Phase-Dependent Energy Storage Performance of the Ni xSe y Polymorphs for Supercapacitor-Battery Hybrid Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50900-50912. [PMID: 36318606 DOI: 10.1021/acsami.2c14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transition-metal chalcogenides have emerged as a promising class of materials for energy storage applications due to their earth abundance, high theoretical capacity, and high electrical conductivity. Herein, we introduce a facile and one-pot electrodeposition method to prepare high-performance nickel selenide NixSey (0.5 ≤ x/y ≤ 1.5) nanostructures (specific capacity = 180.3 mA h g-1 at 1 A g-1). The as-synthesized nickel selenide (NS) nanostructure is however converted to other polymorphs of nickel selenide including orthorhombic NiSe2, trigonal Ni3Se2, hexagonal NiSe, and orthorhombic Ni6Se5 over cycling. Interestingly, NiSe2 and Ni3Se2 polymorphs that display a more metallic character and superior energy storage performance are the predominant phases after a few hundred cycles. We fabricated a hybrid device using activated carbon (AC) as a supercapacitor-type negative electrode and NS as a high-rate battery-type positive electrode (AC||NS). This hybrid device provides a high specific energy of 71 W h kg-1, an excellent specific power of up to 31 400 W kg-1, and exceptional cycling stability (80% retention of the initial capacity after 20 000 cycles). The higher energy storage performance of the device is a result of the development of high-performance NiSe2 and Ni3Se2 polymorphs. Moreover, the reduction of the critical dimension of the NS particles to the nanoscale partially induces an extrinsic pseudocapacitive behavior that improves the rate capability and durability of the device. We also explored the origin of the superior energy storage performance of the NS polymorphs using density functional theory calculations in terms of the computed density of states around the Fermi level, electrical conductivity, and quantum capacitance that follows the trend NiSe2 > Ni3Se2 > NiSe > Ni6Se5. The present study thus provides an appealing approach for tailoring the phase composition of NS as an alternative to the commonly used templated synthesis methods.
Collapse
Affiliation(s)
- Mahrokh Nazari
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-175, Iran
| | - Abolhassan Noori
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-175, Iran
| | | | - Maher F El-Kady
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA)90095, California, United States
| | - Nasim Hassani
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran P.O. Box: 16875-163, Iran
| | - Mehdi Neek-Amal
- Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran P.O. Box: 16875-163, Iran
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, AntwerpB-2020, Belgium
| | - Richard B Kaner
- Department of Chemistry and Biochemistry and California NanoSystems Institute, University of California, Los Angeles (UCLA)90095, California, United States
- Department of Materials Science and Engineering, University of California, Los Angeles (UCLA)90095, California, United States
| | - Mir F Mousavi
- Department of Chemistry, Faculty of Basic Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-175, Iran
| |
Collapse
|
5
|
Lu J, Duan H, Zhang Y, Zhang G, Chen Z, Song Y, Zhu R, Pang H. Directional Growth of Conductive Metal-Organic Framework Nanoarrays along [001] on Metal Hydroxides for Aqueous Asymmetric Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25878-25885. [PMID: 35618261 DOI: 10.1021/acsami.2c02268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) are promising electrochemical materials that possess large specific surface areas, high porosities, good adjustability, and high activities. However, many conventional MOFs exhibit poor conductivity, which hinders their application in electrochemistry. In recent years, conductive MOFs (cMOFs) have attracted a considerable attention. As an important transition metal hydroxide, Ni(OH)2 nanosheets exhibit a high theoretical specific capacitance and a high energy density but a poor electrical conductivity. In this study, we combined a typical cMOF(Ni-HHTP, HHTP = 2,3,6,7,10,11-hexahydroxybenzene) with Ni(OH)2 nanosheets and synthesized a series of Ni-HHTP@Ni(OH)2 nanoarrays. The composite materials exhibit a high electrical conductivity and ionic transfer efficiency and a good stability. Most importantly, our study reveals the chemical interaction between cMOFs and metal hydroxide composites and the relationship between facet exposure and the growth orientation of cMOFs. When Ni-HHTP@Ni(OH)2-2 was assembled as a positive electrode material in an aqueous asymmetric supercapacitor, 98% of the initial capacitance was maintained after 5000 cycles at a high current density of 3 A g-1. The findings of this study will provide meaningful insights into the design of cMOF composites combining other metal hydroxides.
Collapse
Affiliation(s)
- Jiadan Lu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Huiyu Duan
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Yi Zhang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Guangxun Zhang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Zixia Chen
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Yongzhen Song
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Rongmei Zhu
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, Jiangsu, P. R. China
| |
Collapse
|
6
|
Liu S, Wang R, Wang Q, Tian Q, Cui X. A facile synthesis of Ni 0.85Se@Cu 2-xSe nanorods as high-performance supercapacitor electrode materials. Dalton Trans 2021; 50:13543-13553. [PMID: 34505851 DOI: 10.1039/d1dt02199k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transition-metal selenides are regarded as promising electrode materials due to their superior electrochemical performances for supercapacitors. In this study, a nanorod-like hybrid of Ni0.85Se@Cu2-xSe on a Ni-foam substrate is successfully synthesized via a facile one-step route. The Ni0.85Se@Cu2-xSe nanorods are found to be deposited uniformly on the Ni-form substrates. When used as a battery-type electrode in a supercapacitor, the as-deposited Ni0.85Se@Cu2-xSe electrode exhibits a high specific capacity of 1831 F g-1 at 1 A g-1 and 78.4% of capacitance retention after 8000 cycles at 10 A g-1. Moreover, the assembled Ni0.85Se@Cu2-xSe//AC asymmetric supercapacitor (ASC) exhibits an energy density of 63.2 W h kg-1 at a power density of 800.1 W kg-1, as well as good cycling stability (92.1% capacitance retention after 5000 cycles).
Collapse
Affiliation(s)
- Shuling Liu
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Rui Wang
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Qiuting Wang
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Qianhong Tian
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| | - Xian Cui
- College of Chemistry & Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, PR China.
| |
Collapse
|
7
|
Khan MD, Opallo M, Revaprasadu N. Colloidal synthesis of metal chalcogenide nanomaterials from metal-organic precursors and capping ligand effect on electrocatalytic performance: progress, challenges and future perspectives. Dalton Trans 2021; 50:11347-11359. [PMID: 34369529 DOI: 10.1039/d1dt01742j] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Renewable and sustainable functional nanomaterials, which can be employed in alternative green energy sources, are highly desirable. Transition metal chalcogenides are potential catalysts for processes resulting in energy generation and storage. In order to optimize their catalytic performance, high phase purity and precise control over shape and size are indispensable. Metal-organic precursors with pre-formed bonds between the metal and the chalcogenide atoms are advantageous in synthesizing phase pure transition metal chalcogenides with controlled shape and sizes. This can be achieved by the decomposition of metal-organic precursors in the presence of suitable surfactants/capping agents. However, the recent studies on electrocatalysis at the nanoscale level reveal that the capping agents attached to their surface have a detrimental effect on their efficiency. The removal of surfactants from active sites to obtain bare surface nanoparticles is necessary to enhance catalytic activity. Herein, we have discussed the properties of different metal-organic precursors and the role of surfactants in the colloidal synthesis of metal chalcogenide nanomaterials. Moreover, the effect of surfactants on their electrocatalytic performance, the commonly used strategies for removing surfactants from the surface of nanomaterials and the future perspectives are reviewed.
Collapse
Affiliation(s)
- Malik Dilshad Khan
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | | | | |
Collapse
|
8
|
Ameri B, Mohammadi Zardkhoshoui A, Hosseiny Davarani SS. Metal-organic-framework derived hollow manganese nickel selenide spheres confined with nanosheets on nickel foam for hybrid supercapacitors. Dalton Trans 2021; 50:8372-8384. [PMID: 34037022 DOI: 10.1039/d1dt01215k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic framework (MOF) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein, we propose a viable strategy for the synthesis of hollow manganese nickel selenide spheres comprising nanosheets supported on the nickel foam (denoted as MNSe@NF) from the MOF. The MNSe nanostructures can demonstrate enriched active sites, and shorten the ion-electron diffusion pathways. When the MNSe@NF electrode is used as a cathode electrode for a hybrid supercapacitor, the electrode reflected impressive supercapacitive properties with a high capacity of 325.6 mA h g-1 (1172.16 C g-1) at 2 A g-1, an exceptional rate performance of 86.6% at 60 A g-1, and remarkable longevity (3.2% capacity decline after 15 000 cycles). Also, the assembled MNSe@NF∥AC@NF hybrid supercapacitors employing activated carbon on the nickel foam (AC@NF, anode electrode) and MNSe@NF (cathode electrode) revealed an impressive energy density of 66.1 W h kg-1 at 858.45 W kg-1 and an excellent durability of 94.1% after 15 000 cycles.
Collapse
Affiliation(s)
- Bahareh Ameri
- Department of Chemistry, Shahid Beheshti University, G. C., 1983963113, Evin, Tehran, Iran.
| | | | | |
Collapse
|
9
|
Tanwar S, Arya A, Gaur A, Sharma AL. Transition metal dichalcogenide (TMDs) electrodes for supercapacitors: a comprehensive review. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:303002. [PMID: 33892487 DOI: 10.1088/1361-648x/abfb3c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
As globally, the main focus of the researchers is to develop novel electrode materials that exhibit high energy and power density for efficient performance energy storage devices. This review covers the up-to-date progress achieved in transition metal dichalcogenides (TMDs) (e.g. MoS2, WS2, MoSe2,and WSe2) as electrode material for supercapacitors (SCs). The TMDs have remarkable properties like large surface area, high electrical conductivity with variable oxidation states. These properties enable the TMDs as the most promising candidates to store electrical energy via hybrid charge storage mechanisms. Consequently, this review article provides a detailed study of TMDs structure, properties, and evolution. The characteristics technique and electrochemical performances of all the efficient TMDs are highlighted meticulously. In brief, the present review article shines a light on the structural and electrochemical properties of TMD electrodes. Furthermore, the latest fabricated TMDs based symmetric/asymmetric SCs have also been reported.
Collapse
Affiliation(s)
- Shweta Tanwar
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Anil Arya
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Anurag Gaur
- Department of Physics, National Institute of Technology, Kurukshetra-136119, Haryana, India
| | - A L Sharma
- Department of Physics, Central University of Punjab, Bathinda-151401, Punjab, India
| |
Collapse
|
10
|
Jangu S, Satpathy BK, Raju M, Jacob C, Pradhan D. Synthesis of V-shaped MnO 2 nanostructure and its composites with reduced graphene oxide for supercapacitor application. Dalton Trans 2021; 50:6878-6888. [PMID: 33913462 DOI: 10.1039/d1dt00422k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A unique V-shaped MnO2 nanostructure is synthesized with a weak acid (acetic acid) using the microwave-assisted hydrothermal technique. To improve the performance of MnO2 in supercapacitor applications, its composite was prepared with reduced graphene oxide (rGO), i.e., MnO2/rGO, with different weight ratios of MnO2 and rGO. The specific capacitance values of the as-synthesized V-shaped MnO2 nanostructure and MnO2/rGO nanocomposite were calculated to be 64.75 and 88.95 F g-1 at a current density of 0.5 A g-1, respectively, in 1 M Na2SO4 electrolyte. Furthermore, a two-electrode asymmetric supercapacitor device was fabricated using the MnO2/rGO nanocomposite as a positive electrode and activated carbon as a negative electrode. The device has shown energy densities of 25.14 and 17.95 W h kg-1 at 0.25 and 1 kW kg-1 power densities, respectively. These values suggest that the MnO2/rGO nanocomposite is a promising material for supercapacitor devices.
Collapse
Affiliation(s)
- Surendra Jangu
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.
| | | | | | | | | |
Collapse
|
11
|
Samal RR, Samantara AK, Mahalik S, Behera JN, Dash B, Sanjay K. An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors. NEW J CHEM 2021. [DOI: 10.1039/d0nj05088a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic representation of surfactant action for synthesis of cobalt hydroxide and oxide.
Collapse
Affiliation(s)
- R. R. Samal
- Academy of Scientific and Innovative Research
- New Delhi
- India
- Hydro and Electrometallurgy Department
- CSIR- Institute of Minerals and Materials Technology
| | - Aneeya K. Samantara
- National Institute of Science Education and Research (NISER)
- Khordha 752050
- India
- Homi Bhabha National Institute, (HBNI)
- Mumbai
| | - S. Mahalik
- Academy of Scientific and Innovative Research
- New Delhi
- India
- Hydro and Electrometallurgy Department
- CSIR- Institute of Minerals and Materials Technology
| | - J. N. Behera
- National Institute of Science Education and Research (NISER)
- Khordha 752050
- India
- Homi Bhabha National Institute, (HBNI)
- Mumbai
| | - B. Dash
- Academy of Scientific and Innovative Research
- New Delhi
- India
- Hydro and Electrometallurgy Department
- CSIR- Institute of Minerals and Materials Technology
| | - K. Sanjay
- Academy of Scientific and Innovative Research
- New Delhi
- India
- Hydro and Electrometallurgy Department
- CSIR- Institute of Minerals and Materials Technology
| |
Collapse
|
12
|
Chebrolu VT, Balakrishnan B, Cho I, Bak JS, Kim HJ. A unique core-shell structured ZnO/NiO heterojunction to improve the performance of supercapacitors produced using a chemical bath deposition approach. Dalton Trans 2020; 49:14432-14444. [PMID: 33044469 DOI: 10.1039/d0dt00263a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The integration of metal oxide composite nanostructures has attracted great attention in supercapacitor (SC) applications. Herein, we fabricated a series of metal oxide composite nanostructures, including ZnO nanowires, NiO nanosheets, ZnO/CuO nanowire arrays, ZnO/FeO nanocrystals, ZnO/NiO nanosheets and ZnO/PbO nanotubes, via a simple and cost-effective chemical bath deposition (CBD) method. The electrochemical properties of the produced SCs were examined by performing cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) analysis, and electrochemical impedance spectroscopy (EIS). Of the different metal oxides and metal oxide composites tested, the unique surface morphology of the ZnO/NiO nanosheets most effectively increased the electron transfer rate and electrical conductivity, which resulted in improved energy storage properties. The binder-free ZnO/NiO electrode delivered a high specific capacitance/capacity of 1248 F g-1 (599 mA h g-1) at 8 mA cm-2 and long-term cycling stability over the course of 3000 cycles with a capacity retention of 79%. These results suggested a superiority in performance of the ZnO/NiO nanosheets relative to the nanowires, nanowire arrays, nanocrystals, and nanotubes. Thus, the present work has provided an opportunity to fabricate new metal oxide composite nanostructures with high-performance energy storage devices.
Collapse
Affiliation(s)
- Venkata Thulasivarma Chebrolu
- Department of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-Dong, Busan 46241, Republic of Korea.
| | - Balamuralitharan Balakrishnan
- Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai - 600062, Tamil Nadu, India
| | - Inho Cho
- Department of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-Dong, Busan 46241, Republic of Korea.
| | - Jin-Soo Bak
- Department of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-Dong, Busan 46241, Republic of Korea.
| | - Hee-Je Kim
- Department of Electrical Engineering, Pusan National University, Gumjeong-Ku, Jangjeong-Dong, Busan 46241, Republic of Korea.
| |
Collapse
|
13
|
Qiu H, Sun X, An S, Lan D, Cui J, Zhang Y, He W. A high-performance histidine-functionalized MWCNT-GONR/Co–Ni LDH flower cluster structural composite via a microwave synthesis for supercapacitors. Dalton Trans 2020; 49:6391-6397. [DOI: 10.1039/d0dt00438c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A flower cluster structural histidine-functionalized multi-walled carbon nanotube-graphene oxide nanoribbon/Co–Ni LDH (His-MW/LDH) composite was synthesized via the microwave method.
Collapse
Affiliation(s)
- Hengrui Qiu
- School of Chemistry and Chemical Engineering
- Inner Mongolia University of Science& Technology
- Baotou 014010
- P. R. China
| | - Xuejiao Sun
- School of Chemistry and Chemical Engineering
- Inner Mongolia University of Science& Technology
- Baotou 014010
- P. R. China
| | - Shengli An
- School of Chemistry and Chemical Engineering
- Inner Mongolia University of Science& Technology
- Baotou 014010
- P. R. China
| | - Dawei Lan
- School of Chemistry and Chemical Engineering
- Inner Mongolia University of Science& Technology
- Baotou 014010
- P. R. China
| | - Jinlong Cui
- School of Chemistry and Chemical Engineering
- Inner Mongolia University of Science& Technology
- Baotou 014010
- P. R. China
| | - Yongqiang Zhang
- School of Chemistry and Chemical Engineering
- Inner Mongolia University of Science& Technology
- Baotou 014010
- P. R. China
| | - Wenxiu He
- School of Chemistry and Chemical Engineering
- Inner Mongolia University of Science& Technology
- Baotou 014010
- P. R. China
| |
Collapse
|