1
|
Deng W, Wu SG, Ruan ZY, Gong YP, Du SN, Wang HL, Chen YC, Zhang WX, Liu JL, Tong ML. Spin-State Control in Dysprosium(III) Metallacrown Magnets via Thioacetal Modification. Angew Chem Int Ed Engl 2024; 63:e202404271. [PMID: 38700507 DOI: 10.1002/anie.202404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Indexed: 06/19/2024]
Abstract
Integrating controllable spin states into single-molecule magnets (SMMs) enables precise manipulation of magnetic interactions at a molecular level, but remains a synthetic challenge. Herein, we developed a 3d-4f metallacrown (MC) magnet [DyNi5(quinha)5(Clsal)2(py)8](ClO4) ⋅ 4H2O (H2quinha=quinaldichydroxamic acid, HClsal=5-chlorosalicylaldehyde) wherein a square planar NiII is stabilized by chemical stacking. Thioacetal modification was employed via post-synthetic ligand substitutions and yielded [DyNi5(quinha)5(Clsaldt)2(py)8](ClO4) ⋅ 3H2O (HClsaldt=4-chloro-2-(1,3-dithiolan-2-yl)phenol). Thanks to the additional ligations of thioacetal onto the NiII site, coordination-induced spin state switching (CISSS) took place with spin state altering from low-spin S=0 to high-spin S=1. The synergy of CISSS effect and magnetic interactions results in distinct energy splitting and magnetic dynamics. Magnetic studies indicate prominent enhancement of reversal barrier from 57 cm-1 to 423 cm-1, along with hysteresis opening and an over 200-fold increment in coercive field at 2 K. Ab initio calculations provide deeper insights into the exchange models and rationalize the relaxation/tunnelling pathways. These results demonstrate here provide a fire-new perspective in modulating the magnetization relaxation via the incorporation of controllable spin states and magnetic interactions facilitated by the CISSS approach.
Collapse
Affiliation(s)
- Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ya-Ping Gong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Shan-Nan Du
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hai-Ling Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Wei-Xiong Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Jun-Liang Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Wang JL, Chen JT, Yan H, Wang TT, Zhang YQ, Sun WB. Constructing high axiality mononuclear dysprosium molecular magnets via a regulation-of-co-ligands strategy. Dalton Trans 2024; 53:10982-10990. [PMID: 38874222 DOI: 10.1039/d4dt00040d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Two lanthanide complexes with formulae [DyIII(LN5)(pentafluoro-PhO)3] (1) and [DyIII(LN5)(2,6-difluoro-PhO)2](BPh4) (2) (LN5 = 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadecal (19),2,13,15,17-pentaene) were structurally and magnetically characterized. DyIII ions lie in the cavity of a five coordinate nitrogen macrocycle, and in combination with the introduction of multi-fluorinated monodentate phenoxyl coligands a high axiality coordination symmetry is built. Using the pentafluorophenol co-ligand, complex 1 with a D2d coordination environment, is obtained and displays moderate single-molecule magnets (SMMs) behavior. When difluorophenol co-ligands were used, a higher local axisymmetric pentagonal bipyramidal coordination geometry was observed in complex 2, which displays apparent slow magnetic relaxation behavior with a hysteresis temperature of up to 5 K. Further magnetic studies of diluted samples combined with ab initio calculations indicate that the high axiality plays a crucial role in suppressing quantum tunneling of magnetization (QTM) and consequently results in good slow magnetic relaxation behavior. Different fluoro-substituted phenoxyl co-ligands have phenoloxy oxygen atoms with different electrostatic potentials as well as a different number of phenoloxy coligands along the magnetic axis, resulting in different ligand field strengths and coordination symmetries.
Collapse
Affiliation(s)
- Jia-Ling Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Ji-Tun Chen
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Han Yan
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Tian-Tian Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Wen-Bin Sun
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education, School of Chemistry and Material Science Heilongjiang University, 74 Xuefu Road, Harbin 150080, P. R. China.
| |
Collapse
|
3
|
Liu CM, Hao X, Zhu DM, Zhang YQ. Effect of coordinated anions on ferromagnetically coupled Dy 2 zero-field single-molecule magnets. Dalton Trans 2024; 53:6120-6127. [PMID: 38482711 DOI: 10.1039/d4dt00293h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
A new hydrazone Schiff base ligand was condensed from 2-hydroxy-3-methoxybenzaldehyde and pyrimidine-4-carbohydrazide {H2L = (E)-N'-(2-hydroxy-3-methoxybenzylidene)pyrimidine-4-carbohydrazide}, which was used to assemble two new Dy2 complexes Dy2L2(DMF)2(NO3)2 (1) and Dy2L2(DMF)2(AcO)2 (2). Notably, the coordinated anions have a subtle effect on the coordination configurations of the Dy3+ ions and the magnetic properties of the two Dy2 complexes. The Dy3+ ions in 1 and 2 have the same N2O5 coordination environment but show the triangular dodecahedron and the biaugmented trigonal prism coordination configurations, respectively. Magnetic measurements revealed that both 1 and 2 have intramolecular ferromagnetic interactions between the Dy3+ ions and show single-molecule magnet behaviors at 0 Oe, with Ueff/k values of 58.2 K for 1 and 59.9 K for 2. These magnetic properties may be explained by theoretical calculations.
Collapse
Affiliation(s)
- Cai-Ming Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiang Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory for Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dong-Mei Zhu
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Zhang B, Guo X, Tan P, Lv W, Bai X, Zhou Y, Yuan A, Chen L, Liu D, Cui HH, Wang R, Chen XT. Axial Ligand as a Critical Factor for High-Performance Pentagonal Bipyramidal Dy(III) Single-Ion Magnets. Inorg Chem 2022; 61:19726-19734. [PMID: 36417790 DOI: 10.1021/acs.inorgchem.2c02476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The choice of axial ligands is of great importance for the construction of high-performance Dy-based single-molecule magnets (SMMs). Here, combining axial ligands Ph3SiO- (anion of triphenylsilanol) and 2,6-dichloro-4-nitro-PhO- (the anion of 2,6-dichloro-4-nitrophenol) with a neutral macrocyclic ligand 2,14-dimethyl-3,6,10,13,19-pentaazabicyclo[13.3.1]nonadeca-1(19),2,13,15,17-pentaene (L2N5) generates two new pentagonal bipyramidal Dy(III) complexes [DyIII(L2N5) (X)2](BPh4) (X = Ph3SiO-, 1; 2,6-dichloro-4-nitro-PhO-, 2) with strong axial ligand fields. Magnetic characterizations show that 1 possesses a large energy barrier above 1000 K and a magnetic hysteresis up to 9 K, whereas 2 only displays field-induced peaks of alternating-current susceptibilities without the hysteresis loop, even though 2 has a similar coordination geometry with 1. Detailed Ab initio calculations indicate an apparent difference in the axial negative charge between both complexes, which is caused by the diverse electron-donating properties of the axial ligands. The present work provides an efficient strategy to enhance the SMMs' properties, which highlights that the electron-donating property of the axial ligands is especially important for constructing the high-performance Dy-based SMMs.
Collapse
Affiliation(s)
- Ben Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Xuefeng Guo
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Pengfei Tan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Wei Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaoye Bai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Yang Zhou
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China
| | - Dan Liu
- Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Jiangsu 226019, P. R. China
| | - Ruosong Wang
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
5
|
Zhang B, Cheng Z, Wu Y, Chen L, Jing R, Cai X, Jiang C, Zhang YQ, Yuan A, Cui HH, Li ZY. Pseudo-mono-axial ligand fields that support high energy barriers in triangular dodecahedral Dy(iii) single-ion magnets. Chem Sci 2022; 13:13231-13240. [PMID: 36425507 PMCID: PMC9667924 DOI: 10.1039/d2sc03182e] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/30/2022] [Indexed: 11/20/2024] Open
Abstract
The synthesis of air-stable, high-performance single-molecule magnets (SMMs) is of great significance for their practical applications. Indeed, Ln complexes with high coordination numbers are satisfactorily air stable. However, such geometries easily produce spherical ligand fields that minimize magnetic anisotropy. Herein, we report the preparation of three air-stable eight-coordinate mononuclear Dy(iii) complexes with triangular dodecahedral geometries, namely, [Dy(BPA-TPA)Cl](BPh4)2 (1) and [Dy(BPA-TPA)(X)](BPh4)2·nCH2Cl2 (X = CH3O- and n = 1 for 2; L = PhO- and n = 2 for 3), using a novel design concept in which the bulky heptadentate [2,6-bis[bis(2-pyridylmethyl)amino]methyl]-pyridine (BPA-TPA) ligand enwraps the Dy(iii) ion through weak coordinate bonds leaving only a small vacancy for a negatively charged (Cl-), methoxy (CH3O-) or phenoxy (PhO-) moiety to occupy. Magnetic measurements reveal that the single-molecule magnet (SMM) property of complex 1 is actually poor, as there is almost no energy barrier. However, complexes 2 and 3 exhibit fascinating SMM behavior with high energy barriers (U eff = 686 K for 2; 469 K for 3) and magnetic hysteresis temperatures up to 8 K, which is attributed to the pseudolinear ligand field generated by one strong, highly electrostatic Dy-O bond. Ab initio calculations were used to show the apparent difference in the magnetic dynamics of the three complexes, confirming that the pseudo-mono-axial ligand field has an important effect on high-performance SMMs compared with the local symmetry. This study not only presents the highest energy barrier for a triangular dodecahedral SMM but also highlights the enormous potential of the pseudolinear Dy-L ligand field for constructing promising SMMs.
Collapse
Affiliation(s)
- Ben Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Zhijie Cheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Yingying Wu
- School of Materials Science and Engineering, Nankai University 38 Tongyan Road, Haihe Educational Park Tianjin 300350 PR China
| | - Lei Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Rong Jing
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University Nanjing 210023 PR China
| | - Aihua Yuan
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology Zhenjiang 212100 PR China
| | - Hui-Hui Cui
- School of Chemistry and Chemical Engineering, Nantong University Jiangsu 226019 PR China
| | - Zhao-Yang Li
- School of Materials Science and Engineering, Nankai University 38 Tongyan Road, Haihe Educational Park Tianjin 300350 PR China
| |
Collapse
|
6
|
Sutter JP, Béreau V, Jubault V, Bretosh K, Pichon C, Duhayon C. Magnetic anisotropy of transition metal and lanthanide ions in pentagonal bipyramidal geometry. Chem Soc Rev 2022; 51:3280-3313. [PMID: 35353106 DOI: 10.1039/d2cs00028h] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetic anisotropy associated with a pentagonal bipyramidal (PBP) coordination sphere is examined on the basis of experimental and theoretical investigations. The origin and the characteristics of this anisotropy are discussed in relation to the electronic configuration of the metal ions. The effects of crystal field, structural distortion, and a second-coordination sphere on the observed anisotropies for transition meal and lanthanide ions are outlined. For the Ln derivatives, we focus on compounds showing SMM-like behavior (i.e. slow relaxation of their magnetization) in order to highlight the essential chemical and structural parameters for achieving strong axial anisotropy. The use of PBP complexes to impart controlled magnetic anisotropy in polynuclear species such as SMMs or SCMs is also addressed. This review of the magnetic anisotropies associated with a pentagonal bipyramidal coordination sphere for transition metal and lanthanide ions is intended to highlight some general trends that can guide chemists towards designing a compound with specific properties.
Collapse
Affiliation(s)
- Jean-Pascal Sutter
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Virginie Béreau
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France. .,Université de Toulouse, Institut Universitaire de Technologie Paul Sabatier-Département de Chimie, Av. Georges Pompidou, F-81104 Castres, France
| | - Valentin Jubault
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Kateryna Bretosh
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Céline Pichon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| | - Carine Duhayon
- Laboratoire de Chimie de Coordination du CNRS (LCC-CNRS), Université de Toulouse, CNRS, Toulouse, France.
| |
Collapse
|
7
|
Wu X, Li J, Yin B. The interpretation and prediction of lanthanide single-ion magnet from ab initio electronic structure calculation: The capability and limit. Dalton Trans 2022; 51:14793-14816. [DOI: 10.1039/d2dt01507b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single-molecule magnet (SMM) is a fascinating system holding the potential of being revolutionary micro-electronic device in information technology. However current SMMs are still far away from real-life application due to...
Collapse
|
8
|
Wang L, Yao X, Zou X, Li J, Sun W, Li G. Salen-type mononuclear dysprosium complex displays significant performance of single-molecule magnet. CrystEngComm 2022. [DOI: 10.1039/d1ce01684a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three salen-type mononuclear lanthanide complexes with general formula [Ln(5-NO2salcy)(NO3)(CH3OH)2] (Ln = Dy (1), Ho (2) and Er (3)) have been designed and synthesized by reactions of N,N'-bis(5-nitrosalicylaldehyde)ethane-1,2-cyclohexanediamine (5-NO2salcyH2) with various...
Collapse
|
9
|
Li M, Han J, Wu H, Du YE, Liu Y, Chen Y, Chen S. Effects of strong coordination bonds at the axial or equatorial positions on magnetic relaxation for pentagonal bipyramidal dysprosium( iii) single-ion magnets. Dalton Trans 2022; 51:16964-16972. [DOI: 10.1039/d2dt02402k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pentagonal bipyramidal dysprosium(iii) complexes with different strong coordination bonds at axial or equatorial positions show a significant variation in their magnetic relaxation behavior.
Collapse
Affiliation(s)
- Min Li
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, China
| | - Jiayi Han
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, China
| | - Haipeng Wu
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, China
| | - Yi-en Du
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, China
| | - Yufang Liu
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, China
| | - Yongqiang Chen
- Department of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong, 030619, China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| |
Collapse
|
10
|
Yu S, Hu HC, Liu D, Liang Y, Liang F, Yin B, Chen Z. Structural and magnetic studies of six-coordinated Schiff base Dy(III) complexes. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00356b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the aim to tune magnetic anisotropies of six-coordinated Dy(III) complexes, four bis-Schiff bases bearing different spacers and one mono-Schiff base were designed, which are bis(2-hydroxylnaphthalenylmethylene)hydrazine (H2L1), bis(2-hydroxylnaphthylmethylene)ethylenediamine (H2L2), bis(2-hydroxylnaphthylmethylene)-propylenediamine...
Collapse
|
11
|
Bazhenova TA, Kopotkov VA, Korchagin DV, Manakin YV, Zorina LV, Simonov SV, Yakushev IA, Mironov VS, Vasiliev AN, Maximova OV, Yagubskii EB. A Series of Novel Pentagonal-Bipyramidal Erbium(III) Complexes with Acyclic Chelating N3O2 Schiff-Base Ligands: Synthesis, Structure, and Magnetism. Molecules 2021; 26:6908. [PMID: 34834001 PMCID: PMC8622354 DOI: 10.3390/molecules26226908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/29/2022] Open
Abstract
A series of six seven-coordinate pentagonal-bipyramidal (PBP) erbium complexes, with acyclic pentadentate [N3O2] Schiff-base ligands, 2,6-diacetylpyridine bis-(4-methoxybenzoylhydrazone) [H2DAPMBH], or 2,6-diacethylpyridine bis(salicylhydrazone) [H4DAPS], and various apical ligands in different charge states were synthesized: [Er(DAPMBH)(C2H5OH)Cl] (1); [Er(DAPMBH)(H2O)Cl]·2C2H5OH (2); [Er(DAPMBH)(CH3OH)Cl] (3); [Er(DAPMBH)(CH3OH)(N3)] (4); [(Et3H)N]+[Er(H2DAPS)Cl2]- (5); and [(Et3H)N]+[Y0.95Er0.05(H2DAPS)Cl2]- (6). The physicochemical properties, crystal structures, and the DC and AC magnetic properties of 1-6 were studied. The AC magnetic measurements revealed that most of Compounds 1-6 are field-induced single-molecule magnets, with estimated magnetization energy barriers, Ueff ≈ 16-28 K. The experimental study of the magnetic properties was complemented by theoretical analysis based on ab initio and crystal field calculations. An experimental and theoretical study of the magnetism of 1-6 shows the subtle impact of the type and charge state of the axial ligands on the SMM properties of these complexes.
Collapse
Affiliation(s)
- Tamara A. Bazhenova
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
| | - Vyacheslav A. Kopotkov
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
| | - Denis V. Korchagin
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
| | - Yuriy V. Manakin
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
| | - Leokadiya V. Zorina
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
- Institute of Solid State Physics, ISSP RAS, Chernogolovka 142432, Russia
| | - Sergey V. Simonov
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
- Institute of Solid State Physics, ISSP RAS, Chernogolovka 142432, Russia
| | - Ilya A. Yakushev
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
- Kurnakov Institute of General and Inorganic Chemistry, IGIC RAS, Moscow 119333, Russia
| | - Vladimir S. Mironov
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” RAS, Moscow 119333, Russia
| | - Alexander N. Vasiliev
- Laboratory of Quantum Functional Materials, National University of Science and Technology “MISiS”, Moscow 119049, Russia;
- Lomonosov Moscow State University, Moscow 119991, Russia;
| | | | - Eduard B. Yagubskii
- Institute of Problems of Chemical Physics, IPCP RAS, Chernogolovka 142432, Russia; (T.A.B.); (D.V.K.); (Y.V.M.); (L.V.Z.); (S.V.S.); (I.A.Y.); (V.S.M.); (E.B.Y.)
| |
Collapse
|
12
|
Zhu L, Dong Y, Yin B, Ma P, Li D. Improving the single-molecule magnet properties of two pentagonal bipyramidal Dy 3+ compounds by the introduction of both electron-withdrawing and -donating groups. Dalton Trans 2021; 50:12607-12618. [PMID: 34545871 DOI: 10.1039/d1dt00964h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two mononuclear Dy3+ compounds [Dy(bmbpen-F)X] (X = Cl, 1; Br, 2) with a pentagonal bipyramidal (PBP) geometry were obtained from N,N'-bis-(5-methyl-2-hydroxybenzyl)-N,N'-bis(5-fluoro-2-methylpyridyl)ethylenediamine (H2bmbpen-F) and dysprosium halides. The magnetic anisotropy and single-molecule magnet (SMM) behavior of these PBP compounds were regulated by introducing both electron-withdrawing F atoms into the equatorial pyridine rings and electron-donating -CH3 groups into the axial phenolic hydroxyl rings. The results of magnetic characterization show that 1 and 2 exhibit single molecule magnet behavior with magnetization reversal barriers of 990(13) and 1189(16) K under a zero dc external field and magnetic hysteresis loops up to 26 K and 36 K, respectively. The results of ab initio calculations are consistent with the experimental observations, confirming that the simultaneous introduction of electron-withdrawing groups into the equatorial positions and electron-donating groups into the axial positions can lead to PBP Dy-SMMs with improved properties.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Yubao Dong
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China.
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Dongfeng Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
13
|
Thomas-Hargreaves LR, Giansiracusa MJ, Gregson M, Zanda E, O'Donnell F, Wooles AJ, Chilton NF, Liddle ST. Correlating axial and equatorial ligand field effects to the single-molecule magnet performances of a family of dysprosium bis-methanediide complexes. Chem Sci 2021; 12:3911-3920. [PMID: 34163660 PMCID: PMC8179472 DOI: 10.1039/d1sc00238d] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
Treatment of the new methanediide-methanide complex [Dy(SCS)(SCSH)(THF)] (1Dy, SCS = {C(PPh2S)2}2-) with alkali metal alkyls and auxillary ethers produces the bis-methanediide complexes [Dy(SCS)2][Dy(SCS)2(K(DME)2)2] (2Dy), [Dy(SCS)2][Na(DME)3] (3Dy) and [Dy(SCS)2][K(2,2,2-cryptand)] (4Dy). For further comparisons, the bis-methanediide complex [Dy(NCN)2][K(DB18C6)(THF)(toluene)] (5Dy, NCN = {C(PPh2NSiMe3)2}2-, DB18C6 = dibenzo-18-crown-6 ether) was prepared. Magnetic susceptibility experiments reveal slow relaxation of the magnetisation for 2Dy-5Dy, with open magnetic hysteresis up to 14, 12, 15, and 12 K, respectively (∼14 Oe s-1). Fitting the alternating current magnetic susceptibility data for 2Dy-5Dy gives energy barriers to magnetic relaxation (U eff) of 1069(129)/1160(21), 1015(32), 1109(70), and 757(39) K, respectively, thus 2Dy-4Dy join a privileged group of SMMs with U eff values of ∼1000 K and greater with magnetic hysteresis at temperatures >10 K. These structurally similar Dy-components permit systematic correlation of the effects of axial and equatorial ligand fields on single-molecule magnet performance. For 2Dy-4Dy, the Dy-components can be grouped into 2Dy-cation/4Dy and 2Dy-anion/3Dy, where the former have almost linear C[double bond, length as m-dash]Dy[double bond, length as m-dash]C units with short average Dy[double bond, length as m-dash]C distances, and the latter have more bent C[double bond, length as m-dash]Dy[double bond, length as m-dash]C units with longer average Dy[double bond, length as m-dash]C bonds. Both U eff and hysteresis temperature are superior for the former pair compared to the latter pair as predicted, supporting the hypothesis that a more linear axial ligand field with shorter M-L distances produces enhanced SMM properties. Comparison with 5Dy demonstrates unusually clear-cut examples of: (i) weakening the equatorial ligand field results in enhancement of the SMM performance of a monometallic system; (ii) a positive correlation between U eff barrier and axial linearity in structurally comparable systems.
Collapse
Affiliation(s)
| | - Marcus J Giansiracusa
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Matthew Gregson
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Emanuele Zanda
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Felix O'Donnell
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F Chilton
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
14
|
Yin B, Luo L. The anisotropy of the internal magnetic field on the central ion is capable of imposing great impact on the quantum tunneling of magnetization of Kramers single-ion magnets. Phys Chem Chem Phys 2021; 23:3093-3105. [PMID: 33491709 DOI: 10.1039/d0cp05470d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In this work, a theoretical method, taking into account the anisotropy of the internal magnetic field (B[combining right harpoon above]int), is proposed to predict the rate of quantum tunneling of magnetization (QTM), i.e., τQTM-1, for Kramers single-ion magnets (SIMs). Direct comparison to both experimental and previous theoretical results of three typical Kramers SIMs indicates the necessity of the inclusion of the anisotropy of B[combining right harpoon above]int for accurate description of QTM. The predictions of the method here are consistent with the theory proposed by Prokof'ev and Stamp (PS). For Kramers SIMs of high magnetic axiality, the QTM rates, predicted by the method here, are almost linearly proportional to the results by the PS method. The dependence of τQTM-1 on various parameters is analyzed for model systems. The averaged magnitude of B[combining right harpoon above]int (Bave) and principal g value of the axial direction (gZ) are the parameters on which τQTM-1 is linearly dependent. The ones on which τQTM-1 is quadratically dependent are gXY, i.e., the principal g value of the transversal direction, and xaniso characterizing the anisotropy of B[combining right harpoon above]int. Compared to Bave and gZ, gXY and xaniso provide a higher order of dependence for QTM. Therefore regulation of the SMM property via introduction of desired values of gXY and xaniso ought to be a strategy more efficient than the one via Bave and gZ. Being different from the one via gXY, the strategy via xaniso to regulate the QTM has been rarely touched upon according to our best knowledge. However, this strategy could also lead to significant improvement since it is the same as gXY in the aspect of the dependence of τQTM-1.
Collapse
Affiliation(s)
- Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Lan Luo
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| |
Collapse
|
15
|
Shen N, Liang J, Qu X, Liu S, Zhu L, Zhang S, Chen L, Zhang J, Hu D, Yin B. The influence of organic bases and substituted groups on coordination structures affording two mononuclear Dy( iii) single-molecule magnets (SMMs) and a novel Dy( iii)–K( i) compound with unusually coordinated fluorine atoms. CrystEngComm 2021. [DOI: 10.1039/d1ce00431j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The different organic bases and substituted groups of auxiliary ligands play an important role in synthetic processes, finally affording distinct structures and magnetic properties.
Collapse
Affiliation(s)
- Nan Shen
- Faculty of Chemistry and Chemical Engineering
- Engineering Research Center of Advanced Ferroelectric Functional Materials
- Key Laboratory of Phytochemistry of Shaanxi Province
- Baoji University of Arts and Sciences
- Baoji
| | - Jing Liang
- Shaanxi Provincial Cancer Hospital
- Xi' an 710069
- China
| | - Xiaoni Qu
- College of Environment and Chemistry Engineering
- Xi'an Polytechnic University
- Xi'an 710048
- P. R. China
| | - Sha Liu
- Faculty of Chemistry and Chemical Engineering
- Engineering Research Center of Advanced Ferroelectric Functional Materials
- Key Laboratory of Phytochemistry of Shaanxi Province
- Baoji University of Arts and Sciences
- Baoji
| | - Lin Zhu
- Faculty of Chemistry and Chemical Engineering
- Engineering Research Center of Advanced Ferroelectric Functional Materials
- Key Laboratory of Phytochemistry of Shaanxi Province
- Baoji University of Arts and Sciences
- Baoji
| | - Sheng Zhang
- Faculty of Chemistry and Chemical Engineering
- Engineering Research Center of Advanced Ferroelectric Functional Materials
- Key Laboratory of Phytochemistry of Shaanxi Province
- Baoji University of Arts and Sciences
- Baoji
| | - Ling Chen
- Shaanxi Provincial Cancer Hospital
- Xi' an 710069
- China
| | - Jiangwei Zhang
- State Key Laboratory of Catalysis
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS)
- Dalian 116023
- P. R. China
| | - Dengwei Hu
- Faculty of Chemistry and Chemical Engineering
- Engineering Research Center of Advanced Ferroelectric Functional Materials
- Key Laboratory of Phytochemistry of Shaanxi Province
- Baoji University of Arts and Sciences
- Baoji
| | - Bing Yin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an
- China
| |
Collapse
|
16
|
Liu SS, Liu B, Ding MM, Meng YS, Jing JH, Zhang YQ, Wang X, Lin S. Substituent effects of auxiliary ligands in mononuclear dibenzoylmethane Dy III/Er III complexes: single-molecule magnetic behavior and luminescence properties. CrystEngComm 2020. [DOI: 10.1039/d0ce01147a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The single-molecule magnetic behavior and luminescence of [(dbm)3Ln(dmbipy)] and [(dbm)2Ln(dmobipy)(NO3)] are significantly modified by replacing the substituents of auxiliary ligands.
Collapse
Affiliation(s)
- Shan-Shan Liu
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology
- College of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- P. R. China
| | - Bin Liu
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology
- College of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- P. R. China
| | - Man-Man Ding
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
- Beijing National Laboratory for Molecular Sciences
| | - Jia-Hui Jing
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology
- College of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Xincheng Wang
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology
- College of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- P. R. China
| | - Shijing Lin
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology
- College of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- P. R. China
| |
Collapse
|
17
|
Bazhenova TA, Mironov VS, Yakushev IA, Svetogorov RD, Maximova OV, Manakin YV, Kornev AB, Vasiliev AN, Yagubskii EB. End-to-End Azido-Bridged Lanthanide Chain Complexes (Dy, Er, Gd, and Y) with a Pentadentate Schiff-Base [N 3O 2] Ligand: Synthesis, Structure, and Magnetism. Inorg Chem 2019; 59:563-578. [PMID: 31858796 DOI: 10.1021/acs.inorgchem.9b02825] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The syntheses, structure and magnetic properties are reported for five novel 1D polymeric azido-bridged lanthanide complexes with the general formula {[Ln(DAPMBH)(N3)C2H5OH]C2H5OH}n where H2DAPMBH = 2,6-diacetylpyridine bis(4-methoxybenzoylhydrazone)-a new pentadentate pyridine-base [N3O2] ligand and Ln = Dy (1), Y0.930Dy0.070 (2), Er (3), Y0.923Er0.077 (4), and Gd (5). X-ray diffraction analysis of 1-5 show that the central lanthanide atoms are eight-coordinated with the N5O3 donor set originating from the ligand DAPMBH, one coordinated ethanol molecule and two end-to-end type N3- bridges connecting the metal centers into infinite chain. The [LnN5O3] coordination polyhedron can be regarded as a distorted dodecahedron (D2d). AC magnetic measurements revealed that compounds 1-4 show field-induced single-molecule magnet behavior, with estimated energy barriers Ueff ≈ 47-17 K. The experimental study of magnetic properties was complemented by theoretical analysis based on crystal-field calculations. Direct current magnetic susceptibility studies revealed marginally weak intrachain exchange interaction between Ln3+ ions mediated by the end-to-end azide bridging groups (J ≈ -0.015 cm-1 for 5). Comparative analysis of static and dynamic magnetic properties of magnetically concentrated (1, 3) and diluted (2, 4) Dy and Er compounds showed that, despite fascinating 1D azido-bridged chain structure, compounds 1 and 3 are not single-chain magnets; their magnetic behavior is largely due to single-ion magnetic anisotropy of individual Ln3+ ions.
Collapse
Affiliation(s)
- Tamara A Bazhenova
- Institute of Problems of Chemical Physics IPCP RAS , Chernogolovka 142432 , Russia
| | - Vladimir S Mironov
- Institute of Problems of Chemical Physics IPCP RAS , Chernogolovka 142432 , Russia.,Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" RAS , Moscow 119333 , Russia
| | - Ilya A Yakushev
- Institute of Problems of Chemical Physics IPCP RAS , Chernogolovka 142432 , Russia.,Kurnakov Institute of General and Inorganic Chemistry IGIC RAS , Moscow 119991 , Russia.,National Research Center "Kurchatov Institute" , Moscow 123182 , Russia
| | | | - Olga V Maximova
- Institute of Problems of Chemical Physics IPCP RAS , Chernogolovka 142432 , Russia.,Lomonosov Moscow State University , Moscow 119991 , Russia.,National University of Science and Technology "MISiS" , Moscow 119049 , Russia
| | - Yuriy V Manakin
- Institute of Problems of Chemical Physics IPCP RAS , Chernogolovka 142432 , Russia
| | - Alexey B Kornev
- Institute of Problems of Chemical Physics IPCP RAS , Chernogolovka 142432 , Russia
| | - Alexander N Vasiliev
- Lomonosov Moscow State University , Moscow 119991 , Russia.,National University of Science and Technology "MISiS" , Moscow 119049 , Russia.,National Research South Ural State University , Chelyabinsk 454080 , Russia
| | - Eduard B Yagubskii
- Institute of Problems of Chemical Physics IPCP RAS , Chernogolovka 142432 , Russia
| |
Collapse
|