1
|
Song YJ, Ren SY, Zuo S, Shi ZQ, Li Z, Li G. Tailored Porous Ferrocene-Based Metal-Organic Frameworks as High-Performance Proton Conductors. Inorg Chem 2024; 63:8194-8205. [PMID: 38639416 DOI: 10.1021/acs.inorgchem.4c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Although crystalline metal-organic frameworks (MOFs) have gained a great deal of interest in the field of proton conduction in recent years, the low stability and poor proton conductivity (σ) of some MOFs have hindered their future applications. As a result, resolving the issues listed above must be prioritized. Due to their exceptional structural stability, MOFs with ferrocene groups that exhibit particular physical and chemical properties have drawn a lot of attention. This study describes the effective preparation of a set of three-dimensional ferrocene-based MOFs, MIL-53-FcDC-Al/Ga and CAU-43, containing both main group metals and 1,1'-ferrocene dicarboxylic acid (H2FcDC). Multiple measurements, including powder X-ray diffraction (PXRD), infrared (IR), and scanning electron microscopy (SEM), confirmed that the addition of ferrocene groups enhanced the thermal, water, and acid-base stabilities of the three MOFs. Consequently, their proton-conductive behaviors were meticulously measured utilizing the AC impedance approach, and their best proton conductivities are 5.20 × 10-3, 2.31 × 10-3, and 1.72 × 10-4 S/cm at 100 °C/98% relative humidity (RH), respectively. Excitingly, MIL-53-FcDC-Al/Ga demonstrated an extraordinarily ultrahigh σ of above 10-4 S·cm-1 under 30 °C/98% RH. Using data from structural analysis, PXRD, SEM, thermogravimetry (TG), and activation energy, their proton transport mechanisms were thoroughly examined. The fact that these MOFs are notably easy to assemble, inexpensive, toxin-free, and stable will increase the range of practical uses for them.
Collapse
Affiliation(s)
- Yong-Jie Song
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Si-Yuan Ren
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Shuaiwu Zuo
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Zhi-Qiang Shi
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou 234000, P. R. China
| | - Zifeng Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Gang Li
- College of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
2
|
Abbas Z, Hussain N, Kumar S, Mobin SM. In situ growth of a redox-active metal-organic framework on electrospun carbon nanofibers as a free-standing electrode for flexible energy storage devices. NANOSCALE 2024; 16:868-878. [PMID: 38099850 DOI: 10.1039/d3nr04984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rational construction of free-standing and flexible electrodes for application in electrochemical energy storage devices and next-generation supercapacitors is an emerging research focus. Herein, we prepared a redox-active ferrocene dicarboxylic acid (Fc)-based nickel metal-organic framework (MOF) on electrospun carbon nanofibers (NiFc-MOF@CNFs) via an in situ approach. This in situ approach avoided the aggregation of the MOF. The NiFc-MOF@CNF flexible electrode showed a high redox-active behavior owing to the presence of ferrocene and flexible carbon nanofibers, which led to unique properties, including high flexibility and lightweight. Furthermore, the prepared electrode was utilized in a supercapacitors (SC) without the use of any binder, which achieved a specific capacity of 460 C g-1 at 1 A g-1 with an excellent cyclic retention of 82.2% after 25 000 cycles and a good rate capability. A flexible asymmetric supercapacitor device was assembled, which delivered a high energy density of 56.25 W h kg-1 and a long-lasting cycling performance. Also, the prepared electrode could be used as a freestanding electrode in flexible devices at different bending angles. The obtained cyclic voltammetry curves showed negligible changes, indicating the high stability and good flexibility of the electrode. Thus, the use of the in situ strategy can lead to the uniform growth of redox-active MOFs or other porous materials on CNFs.
Collapse
Affiliation(s)
- Zahir Abbas
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India.
| | - Nissar Hussain
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India.
| | - Surender Kumar
- CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Near Habibganj Naka, Bhopal - 462026, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India.
- Centre for Advanced Electronics (CAE), Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
3
|
|
4
|
Benecke J, Fuß A, Engesser TA, Stock N, Reinsch H. A Flexible and Porous Ferrocene‐Based Gallium MOF with MIL‐53 Architecture. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jannik Benecke
- Institute of Inorganic Chemistry Christian-Albrechts-Universität Max-Eyth Straße 2 24118 Kiel Germany
| | - Alexander Fuß
- Institute of Inorganic Chemistry Christian-Albrechts-Universität Max-Eyth Straße 2 24118 Kiel Germany
| | - Tobias A. Engesser
- Institute of Inorganic Chemistry Christian-Albrechts-Universität Max-Eyth Straße 2 24118 Kiel Germany
| | - Norbert Stock
- Institute of Inorganic Chemistry Christian-Albrechts-Universität Max-Eyth Straße 2 24118 Kiel Germany
| | - Helge Reinsch
- Institute of Inorganic Chemistry Christian-Albrechts-Universität Max-Eyth Straße 2 24118 Kiel Germany
| |
Collapse
|
5
|
Ospina-Castro ML, Ávila EE, Briceño A, Reiber A, Pacheco-Londoño LC, Galan-Freyle NJ. Self-assembly and supramolecular isomerism in 1D metal–organometallic networks based on transition-metal assemblies from 1,1′-ferrocene-dicarboxylic acid and ancillary nitrogen heterocycle ligands. CrystEngComm 2021. [DOI: 10.1039/d1ce01204e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Eight novel 1D-MOMN's with different topologies were obtained from the self-assembly of M(ii) (M: Cu, Co, Cd, Zn), ancillary nitrogen ligands and bridging 1,1′-ferrocenedicarboxylate anions and characterized by X-ray diffraction techniques.
Collapse
Affiliation(s)
- María L. Ospina-Castro
- Grupo de investigación Química Supramolecular Aplicada, Programa de Química, Universidad del Atlántico, Barranquilla, Colombia
| | - Edward E. Ávila
- Universidad Yachay Tech, Escuela de Ciencias Químicas e Ingenierías, Grupo de Investigaciones en Materiales Avanzados y Procesos (GIAMP), Hda, San José, Urcuquí, 100119, Ecuador
| | - Alexander Briceño
- Laboratorio de Síntesis y Caracterización de Nuevos Materiales, Centro de Química, Instituto Venezolano de Investigaciones Científicas, San Antonio de Los Altos, Miranda, Venezuela
| | - Andreas Reiber
- Laboratorio de la Interfase Inorgánica-Orgánica, Universidad de los Andes, Bogotá, Colombia
| | | | | |
Collapse
|
6
|
Gao R, Chen SM, Wang F, Zhang J. Single-Crystal Syntheses and Properties of Indium-Organic Frameworks Based on 1,1'-Ferrocenedicarboxylic Acid. Inorg Chem 2020; 60:239-245. [PMID: 33352039 DOI: 10.1021/acs.inorgchem.0c02878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Presented here are a series of indium-organic frameworks synthesized by the self-assembly of In3+ salts and 1,1'-ferrocenedicarboxylic acid (H2FcDCA). Nitrogen-containing organic additives played various roles in the diversity of the structures. These compounds exhibit diverse frameworks with rich supramolecular interactions, which show good photoelectronic and redox activity together with active FcDCA ligands. Moreover, the indium-based MIL-53 analogue exhibited permanent porosity and gas separation.
Collapse
Affiliation(s)
- Ran Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shu-Mei Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Fei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
7
|
Hu ML, Abbasi-Azad M, Habibi B, Rouhani F, Moghanni-Bavil-Olyaei H, Liu KG, Morsali A. Electrochemical Applications of Ferrocene-Based Coordination Polymers. Chempluschem 2020; 85:2397-2418. [PMID: 33140916 DOI: 10.1002/cplu.202000584] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 10/01/2020] [Indexed: 12/13/2022]
Abstract
Ferrocene and its derivatives, especially ferrocene-based coordination polymers (Fc-CPs), offer the benefits of high thermal stability, two stable redox states, fast electron transfer, and excellent charge/discharge efficiency, thus holding great promise for electrochemical applications. Herein, we describe the synthesis and electrochemical applications of Fc-CPs and reveal how the incorporation of ferrocene units into coordination polymers containing other metals results in unprecedented properties. Moreover, we discuss the usage of Fc-CPs in supercapacitors, batteries, and sensors as well as further applications of these polymers, for example in electrocatalysts, water purification systems, adsorption/storage systems.
Collapse
Affiliation(s)
- Mao-Lin Hu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Mahsa Abbasi-Azad
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| | - Behnam Habibi
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| | - Hamed Moghanni-Bavil-Olyaei
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| | - Kuan-Guan Liu
- State Key Laboratory of High-Efficiency Coal Utilization, and Green Chemical Engineering, and Ningxia Key Laboratory for Photovoltaic Materials, Ningxia University, Yin, Chuan, 750021, P. R. China
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box, 14155-4838, Tehran, Iran
| |
Collapse
|
8
|
Benecke J, Grape ES, Fuß A, Wöhlbrandt S, Engesser TA, Inge AK, Stock N, Reinsch H. Polymorphous Indium Metal-Organic Frameworks Based on a Ferrocene Linker: Redox Activity, Porosity, and Structural Diversity. Inorg Chem 2020; 59:9969-9978. [PMID: 32628458 DOI: 10.1021/acs.inorgchem.0c01124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metallocene-based linker molecule 1,1'-ferrocenedicarboxylic acid (H2FcDC) was used to synthesize four different polymorphs of composition [In(OH)(FeC12H8O4)]. Using conventional solvent-based synthesis methods and varying the synthetic parameters such as metal source, reaction temperature, and solvent, two different MOFs and one 1D-coordination polymer denoted as CAU-43 (1), In-MIL-53-FcDC_a (2), and In-FcDC (3) were obtained. Furthermore, thermal treatment of CAU-43 (1) at 190 °C under vacuum yielded a new polymorph of 2, In-MIL-53-FcDC_b (4). Both MOFs 2 and 4 crystallize in a MIL-53 type structure, but in different space groups C2/m for 2 and P1̅ for 4. The structures of the four title compounds were determined by single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), or a combination of three-dimensional electron diffraction measurements (3D ED) and PXRD. N2 sorption experiments of 1, 2, and 4 showed specific surface areas of 355 m2 g-1, 110 m2 g-1, and 140 m2 g-1, respectively. Furthermore, the electronic properties of the title compounds were characterized via Mössbauer and EPR spectroscopy. All Mössbauer spectra showed the characteristic doublet, proving the persistence of the ferrocene moiety. In the cases of 1, 3, and 4, appreciable impurities of ferrocenium ions could be detected by electron paramagnetic resonance spectroscopy. Cyclovoltammetric experiments were performed to demonstrate the accessible redox activity of the linker molecule of the title compounds. A redox process of FcDC2- with oxidation (between 0.86 and 0.97 V) and reduction wave (between 0.69 and 0.80 V) was observed.
Collapse
Affiliation(s)
- Jannik Benecke
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Alexander Fuß
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Stephan Wöhlbrandt
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Tobias A Engesser
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Norbert Stock
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Helge Reinsch
- Institute of Inorganic Chemistry, Christian-Albrechts-Universität, Max-Eyth Straße 2, D-24118 Kiel, Germany
| |
Collapse
|
9
|
Benecke J, Svensson Grape E, Engesser TA, Inge AK, Reinsch H. Observation of three different linker conformers in a scandium ferrocenedicarboxylate coordination polymer. CrystEngComm 2020. [DOI: 10.1039/d0ce00986e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the coordination polymer CAU-50 based on 1,1′-ferrocenedicarboxylate and scandium, three different conformers of the same linker molecule are observed.
Collapse
Affiliation(s)
- Jannik Benecke
- Institute of Inorganic Chemistry
- Christian-Albrechts-Universität
- D-24118 Kiel
- Germany
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Tobias A. Engesser
- Institute of Inorganic Chemistry
- Christian-Albrechts-Universität
- D-24118 Kiel
- Germany
| | - A. Ken Inge
- Department of Materials and Environmental Chemistry
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Helge Reinsch
- Institute of Inorganic Chemistry
- Christian-Albrechts-Universität
- D-24118 Kiel
- Germany
| |
Collapse
|