1
|
Wang T, Chen S, Chen KJ. Metal-Organic Framework Composites and Their Derivatives as Efficient Electrodes for Energy Storage Applications: Recent Progress and Future Perspectives. CHEM REC 2023:e202300006. [PMID: 36942948 DOI: 10.1002/tcr.202300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Metal-organic frameworks (MOFs) have been important electrochemical energy storage (EES) materials because of their rich species, large specific surface area, high porosity and rich active sites. Nevertheless, the poor conductivity, low mechanical and electrochemical stability of pristine MOFs have hindered their further applications. Although single component MOF derivatives have higher conductivity, self-aggregation often occurs during preparation. Composite design can overcome the shortcomings of MOFs and derivatives and create synergistic effects, resulting in improved electrochemical properties for EES. In this review, recent applications of MOF composites and derivatives as electrodes in different types of batteries and supercapacitors are critically discussed. The advantages, challenges, and future perspectives of MOF composites and derivatives have been given. This review may guide the development of high-performance MOF composites and derivatives in the field of EES.
Collapse
Affiliation(s)
- Teng Wang
- Ningbo Institute of Northwestern Polytechnical University, Northwestern Polytechnical University, Ningbo, 315103, PR China
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072, PR China
| | - Shaoqian Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072, PR China
| | - Kai-Jie Chen
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Xi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi' an, Shaanxi, 710072, PR China
| |
Collapse
|
2
|
Raman V, Gándara F, Ibrahim Mohamed Tahir M, Basyaruddin Abdul Rahman M, Sulaiman Y. 1,2,4-Triazole (Htrz) Functionalised 2D-Manganese-Organic Framework (UPMOF-5) as a Battery-type Electrode for Supercapattery. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.117122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Qiao Y, Li N, Dong M, Jia P, Ma C, Zhang T, Jiao T. MOF-Derived MnO/C Nanocomposites for High-Performance Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4257. [PMID: 36500881 PMCID: PMC9739905 DOI: 10.3390/nano12234257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
As ordered porous materials, metal-organic frameworks (MOFs) have attracted tremendous attention in the field of energy conversion and storage due to their high specific surface area, permanent porosity, and tunable pore sizes. Here, MOF-derived MnO/C nanocomposites with regular octahedral shape were synthesized using a Mn-based analogue of the MIL-100 framework (Mn-MIL-100, MIL: Matérial Institut Lavoisier) as the precursor. Using aberration-corrected environmental transmission electron microscopy (ETEM), MnO nanocages with a diameter of approximately 20 nm were recognized in the MnO/C nanocomposites fabricated, dispersed in a microporous carbon matrix homogeneously. The nanocages are composed of MnO nanoparticles with a diameter of approximately 2 nm and with a single crystal structure. The specific surface area of the as-prepared MnO/C octahedra decreases to 256 m2 g-1 from 507 m2 g-1 of the Mn-MIL-100 precursor, whereas the total pore volume increases to 0.245 cm3 g-1, which is approximately 29% higher than that of the precursor (0.190 cm3 g-1). Additionally, when utilized as an electrode for supercapacitors, the MOF-derived MnO/C nanocomposite demonstrates a towering specific capacitance of 421 F g-1 at 0.5 A g-1 and good cycle stability (94%) after 5000 cycles. Our work reveals that the MnO nanoparticles in MOF-derived MnO/C nanocomposites exhibit nanocage structure characteristics, which might be inherited from the Mn-MIL-100 precursor with analogous supertetrahedron units.
Collapse
Affiliation(s)
- Yuqing Qiao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Na Li
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Mingwei Dong
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Peng Jia
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Chongchong Ma
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tong Zhang
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
4
|
Two new isotypic Co(II)/Ni(II)-coordination polymers based on 5-(6-Carboxypyridin-2-yl)isophthalic acid: Synthesis, structure analysis and magnetism properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Han Y, Cui J, Yu Y, Chao Y, Li D, Wang C, Wallace GG. Efficient Metal-Oriented Electrodeposition of a Co-Based Metal-Organic Framework with Superior Capacitive Performance. CHEMSUSCHEM 2022; 15:e202200644. [PMID: 35510800 PMCID: PMC9401579 DOI: 10.1002/cssc.202200644] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/01/2022] [Indexed: 06/14/2023]
Abstract
An efficient cathodic electrodeposition method is developed for coating Co-based metal-organic frameworks (Co-MOF) on carbon fiber cloth (CFC), a widely used substrate in energy fields. The use of a highly active Co metal surface enables nucleation and growth of Co-MOF in 3D rodlike crystal bundles. When used as a binder-free electrode (Co-MOF/CFC) for supercapacitors, it shows a high areal capacitance of 1784 mF cm-2 at 1 mA cm-2 , good cycling stability and excellent rate capability. The assembled asymmetric all-solid-state supercapacitor device (Co-MOF/CFC//AC) delivers a high energy density and power density. This work may open up an effective approach to realize the electrosynthesis of MOF films, promoting use in energy storage and conversion fields.
Collapse
Affiliation(s)
- Yan Han
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387P. R. China
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteUniversity of WollongongNew South Wales2500Australia
| | - Jian Cui
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387P. R. China
| | - Yue Yu
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387P. R. China
| | - Yunfeng Chao
- Henan Institute of Advanced TechnologyZhengzhou UniversityZhengzhou450052P. R. China
| | - Dejun Li
- Energy & Materials Engineering CentreCollege of Physics and Materials ScienceTianjin Normal UniversityTianjin300387P. R. China
| | - Caiyun Wang
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteUniversity of WollongongNew South Wales2500Australia
| | - Gordon G. Wallace
- ARC Centre of Excellence for Electromaterials ScienceIntelligent Polymer Research InstituteUniversity of WollongongNew South Wales2500Australia
| |
Collapse
|
6
|
Ganesh A, Sivakumar T, Venkateswari P, Sankar G, Venkatesh R. Sweet Potato-Derived Carbon Nanosheets Incorporate Co3O4 Nanocomposite Films as Electrode Materials for Asymmetric Supercapacitors and Its Electro Chemical Performance. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02273-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Zhang Q, Hong Y, Wang Y, Guo Y, Wang K, Wu H, Zhang C. Recent advances in pillar‐layered metal‐organic frameworks with interpenetrated and non‐interpenetrated topologies as supercapacitor electrodes. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qichun Zhang
- City University of Hong Kong Department of Physics and Materials Science 83 Tat Chee Ave, Kowloon Tong 999077 Hong Kong HONG KONG
| | - Ye Hong
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Yuting Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Yuxuan Guo
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China CHINA
| | - Hua Wu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, P. R CHINA
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, China CHINA
| |
Collapse
|
8
|
Akintola O, Gerlach P, Plass CT, Balducci A, Plass W. Enhancing Capacity and Stability of Anionic MOFs as Electrode Material by Cation Exchange. Front Chem 2022; 10:836325. [PMID: 35340418 PMCID: PMC8942763 DOI: 10.3389/fchem.2022.836325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/01/2022] [Indexed: 11/17/2022] Open
Abstract
In this study we report on the characterization and use of the anionic metal-organic framework (MOF) JUMP-1, [(Me2NH2)2[Co3(ntb)2(bdc)]] n , alongside with its alkali-metal ion-exchanged analogs JUMP-1(Li) and JUMP-1(Na), as electrode materials for lithium and sodium batteries. Composite electrodes containing these anionic-MOFs were prepared and tested in 1 M lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) in propylene carbonate (PC) and/or 1 M sodium TFSI (NaTFSI) in PC. We showed that the ion-exchanged materials JUMP-1(Li) and JUMP-1(Na) display higher capacities in comparison with the original as-prepared compound JUMP-1 (490 mA∙h∙g-1 vs. 164 mA∙h∙g-1 and 83 mA∙h∙g-1 vs. 73 mA∙h∙g-1 in Li and Na based electrolytes, respectively). Additionally, we showed that the stability of the electrodes containing the ion-exchanged materials is higher than that of JUMP-1, suggesting a form of chemical pre-alkalation works to stabilize them prior to cycling. The results of these studies indicate that the use of designed anionic-MOFs represents a promising strategy for the realization of high performance electrodes suitable for energy storage devices.
Collapse
Affiliation(s)
- Oluseun Akintola
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Patrick Gerlach
- Institut für Technische Chemie und Umweltchemie, Friedrich-Schiller-Universität Jena, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Jena, Germany
| | - Christian T. Plass
- Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Andrea Balducci
- Institut für Technische Chemie und Umweltchemie, Friedrich-Schiller-Universität Jena, Jena, Germany
- Center for Energy and Environmental Chemistry Jena (CEEC Jena), Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Jena, Germany
| |
Collapse
|
9
|
Wang S, Li F, Liu Y, Zhang Q, Song H. Fast catalytic transfer hydrogenation of phenol to cyclohexanol over urea modified Ni@CN nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d2nj03040c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ni@CN-450 catalyst prepared via direct pyrolysis of Ni-MOF-74(N) exhibited superior catalytic activity in catalytic transfer hydrogenation.
Collapse
Affiliation(s)
- Shuai Wang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Feng Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Yanxiu Liu
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Qiang Zhang
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| | - Hua Song
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
| |
Collapse
|
10
|
Kim G, Kim G, Kim D, Jung OS. Subtle metal( ii) effects of 2D coordination networks on SCSC guest exchange. CrystEngComm 2022. [DOI: 10.1039/d2ce00837h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The multi-channel crystals consisting of 2-D networks G@[M(NO3)2L] are an unusually efficient, tolerant, and reproducible matrix offering M-dependent adsorption/desorption of various guest molecules in the single-crystal-to-single-crystal mode.
Collapse
Affiliation(s)
- Gyeongwoo Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Gyeongmin Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Dongwon Kim
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| | - Ok-Sang Jung
- Department of Chemistry, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
11
|
Guo Y, Chen C, Wang Y, Hong Y, Wang K, Niu D, Zhang C, Zhang Q. Cu/CuxO@C nanocomposites as efficient electrodes for high-performance supercapacitor devices. Dalton Trans 2022; 51:14551-14556. [DOI: 10.1039/d2dt02268k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel method, reduction followed by oxidation procedure, has been developed to fabricate the efficient electrodes derivated from metal-organic frameworks (MOFs), which were synthesized using terephthalic acid (TP) or 1,3,5-benzenetricarboxylic...
Collapse
|
12
|
Zeeshan M, Shahid M. State of the art developments and prospects of metal-organic frameworks for energy applications. Dalton Trans 2021; 51:1675-1723. [PMID: 34919099 DOI: 10.1039/d1dt03113a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The progress on technologies for the cleaner and ecological transformation and storage of energy to combat effluence or pollution and the impending energy dilemma has recently attracted interest from energy research groups, particularly in the field of coordination chemistry, among inorganic chemists. Carriers for storing energy or facilitating mass and e- transport are considered significant for energy conversion. Accordingly, considering their properties such as large surface area, low cost, customizable pore diameter, tunable topologies, low densities, and variable frameworks, MOFs (metal-organic frameworks) and their derivatives are well-suited for this purpose. MOFs are an innovative category of porous and crystalline materials, which have gained significant interest in recent years. Thus, herein, we highlight the state of the art progress on MOFs for energy-based applications, as perfect compounds and elements in compound assemblies for converting solar energy, lithium-ion arrays, fuel devices, hydrogen production, photocatalytic CO2 reduction, proton conduction, etc. In addition, the substantial progress achieved in the production of various composites and derivatives containing MOFs with particular focus on supercapacitors and gas adsorption and storage is summarized, concentrating on the correlation between their coordination structural frameworks and applications in the field of energy. The current improved strategies, challenges, and future prospects are also presented in view of the coordination chemistry governing the structural modification of MOFs for energy applications.
Collapse
Affiliation(s)
- Mohd Zeeshan
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
13
|
Dubskikh VA, Lysova AA, Samsonenko DG, Lavrov AN, Dybtsev DN, Fedin VP. Coordination Polymers of Ni(II) with Thiophene Ligands: Synthesis, Structures, and Magnetic Properties. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s107032842110002x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
14
|
Ma X, Feng H, Yan T, Zhang L, Liu X, Cao S. Constructing a hierarchically structured KNi 0.67Co 0.33PO 4·H 2O-graphene hydrogel/Ni foam electrode for superior all-solid-state supercapacitor. Dalton Trans 2021; 50:13276-13285. [PMID: 34608902 DOI: 10.1039/d1dt01744f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A monolithic supercapacitor electrode of a KNi0.67Co0.33PO4·H2O-graphene composite hydrogel supported on Ni foam (KNCP-GH/NF) is first prepared by a one-step hydrothermal method, which achieves notable improvements in the electrode surface area and mass-loading of active materials. The KNCP-GH/NF electrode enjoys a hierarchical open-porous structure, where the KNCP-GH composite hydrogel fills in the voids in NF and the porous graphene hydrogel (GH) simultaneously provides a large support surface for growing active KNCP nanoflowers. Accordingly, the KNCP-GH/NF electrode exhibits a strikingly high capacity of 3240 mC cm-2 (876 C g-1) at 2 mA cm-2 and a satisfactory rate performance with 78.3% retention at 100 mA cm-2. Further, an all-solid-state asymmetric supercapacitor, constituted by using KNCP-GH/NF and Fe2P/GH/NF as the cathode and anode, respectively, and PVA-KOH as the solid-state gel electrolyte, delivers a high energy density of 69.2 W h kg-1 (3.9 mW h cm-3) and a power density of 13 229 W kg-1 (720 mW h cm-3) as well as notable cyclability with 81.2% capacity retention after 10 000 charge/discharge cycles. These attractive performances suggest a promising potential for a hierarchically structured KNCP-GH/NF electrode for the high-performance energy storage application.
Collapse
Affiliation(s)
- Xueying Ma
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Hanfang Feng
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Tianxiang Yan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Li Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China. .,Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Xuying Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China. .,Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Shaokui Cao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China. .,Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
15
|
Buasakun J, Srilaoong P, Chainok K, Raksakoon C, Rattanakram R, Duangthongyou T. Dual luminescent coordination polymers based on flexible aliphatic carboxylate ligands supplemented by rigid bipyridyl ligands for 2,4-dinitrophenol (DNP) and iron(III) ion detection. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Assembly of Three New Co2/Mn5/Co5-Cluster-Based Metal–Organic Frameworks: Syntheses, Structure, Thermal Stability and Magnetic Properties. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Guo Y, Wang K, Hong Y, Wu H, Zhang Q. Recent progress on pristine two-dimensional metal-organic frameworks as active components in supercapacitors. Dalton Trans 2021; 50:11331-11346. [PMID: 34313288 DOI: 10.1039/d1dt01729b] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) are a new generation of 2D materials that can provide uniform active sites and unique open channels as well as excellent catalytic abilities, interesting magnetic properties, and reasonable electrical conductivities. Thus, these MOFs are uniquely qualified for use in applications in energy-related fields or portable devices because they possess fast charge and discharge ability, high power density, and ultralong cycle life factors. There has been worldwide research interest in 2D conducting MOFs, and numerous techniques and strategies have been developed to synthesize these MOFs and their derivatives. Thus, this is the opportune time to review recent research progress on the development of 2D MOFs as electrodes in supercapacitors. This review covers synthetic design strategies, electrochemical performances, and working mechanisms. We will divide these 2D MOFs into two types on the basis of their conductive aspects: 2D conductive MOFs and 2D layered MOFs (including pillar-layered MOFs and 2D nanosheets). The challenges and perspectives of 2D MOFs are also provided.
Collapse
Affiliation(s)
- Yuxuan Guo
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China.
| | | | | | | | | |
Collapse
|
18
|
Chang CY, Tsai MJ, Wu JY. Structure and reversible crystal-to-crystal transformations of a zinc(II) coordination polymer constructed from an imide-based dicarboxylic acid. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Bai F, Yao B, Wang R, Wang W, Wang Q, Ma Y, Li L. Structures and magnetic properties of five lanthanide-radical complexes constructed by 8-methoxyquinoline substituted tridentate chelating nitronyl nitroxide radical. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Yuan R, Chen H, Zhu QQ, He H. Rational fabrication of a porous Cd-organic framework for chemical fixation of CO2 and selective sorption of p-xylene over other isomers. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Ghosh S, Sarkar A, Chatterjee S, Nayek HP. Elucidation of selective adsorption study of Congo red using new Cadmium(II) metal-organic frameworks: Adsorption kinetics, isotherm and thermodynamics. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
22
|
Hao XX, Zhang H, Zuo EJ. Two mixed ligand coordination polymers: Photocatalytic dye degradation and protective effect against peri-implantitis by reducing P. gingivalis survival gene expression levels. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.121959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Sriram B, Sathiyan A, Wang SF, Elanthamilan E, Joseph XB, Baby JN, Merlin JP, Ezhilarasi JC. Synergistic effect of Co3O4 nanoparticles with Bauhinia vahlii dry fruits derived activated carbon on energy storage applications. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Raza N, Kumar T, Singh V, Kim KH. Recent advances in bimetallic metal-organic framework as a potential candidate for supercapacitor electrode material. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213660] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Novel luminescent calixarene-based lanthanide materials: From synthesis and characterization to the selective detection of Fe3+. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Yi G, Li P, Xing B, Tian Q, Zhang X, Xu B, Huang G, Chen L, Zhang Y. Nitrogen-rich graphene aerogel with interconnected thousand-layer pancake structure as anode for high performance of lithium-ion batteries. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Azizabadi O, Akbarzadeh F, Danshina S, Chauhan NPS, Sargazi G. An efficient ultrasonic assisted reverse micelle synthesis route for Fe3O4@Cu-MOF/core-shell nanostructures and its antibacterial activities. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Wang Y, Cao J, Yang Z, Xiong W, Xu Z, Song P, Jia M, Sun S, Zhang Y, Li W. Fabricating iron-cobalt layered double hydroxide derived from metal-organic framework for the activation of peroxymonosulfate towards tetracycline degradation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Xuan JP, Huang NB, Zhang JJ, Dong WJ, Yang L, Wang B. Fabricating Co–N–C catalysts based on ZIF-67 for oxygen reduction reaction in alkaline electrolyte. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121788] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
30
|
Li ZH, Xue LP, Qin QP. A methyl viologen-containing cadmium crystalline material with photochromism and methylamine sensing properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
31
|
Wang J, Quan Y, Wang G, Wang D, Xiao J, Gao S, Xu H, Liu S, Cui L. 3D hollow cage copper cobalt sulfide derived from metal–organic frameworks for high-performance asymmetric supercapacitors. CrystEngComm 2021. [DOI: 10.1039/d1ce00884f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The fabrication of the advanced MOF-based 3D hollow cage ternary bimetallic material CuCo2S4 for high performance asymmetric supercapacitors.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Yiling Quan
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Guoxiang Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Dazhi Wang
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Jie Xiao
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Shiping Gao
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Hongfeng Xu
- Liaoning Provincial Key Laboratory of New Energy Battery, Dalian Jiaotong University, Dalian 116028, PR China
| | - Sa Liu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Li Cui
- School of Light Industry & Chemical Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| |
Collapse
|
32
|
Peng S, Qi YJ, Li XH, Sun C, Li LY, Li XX, Zheng ST, Zhang Q. Two isomeric zeolite-like metal–organic frameworks with mechanically responsive luminescence emission and gas adsorption properties. CrystEngComm 2021. [DOI: 10.1039/d1ce00464f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The two isomeric zeolite-like metal–organic frameworks based on tetrahedral TPO3− ligands and tetrahedrally connected Cd2+ ions were prepared. One of the compounds shows mechanic-responsive luminescence after the crystals were ground for different time.
Collapse
Affiliation(s)
- Shuang Peng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Jie Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Hao Li
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cai Sun
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ling-Yun Li
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Xiong Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shou-Tian Zheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore, Singapore
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong, SAR 999077, P. R. China
| |
Collapse
|
33
|
Gao X, Geng R, Su F. Three Co/Ni(II)-MOFs with dinuclear metal units constructed by biphenyl-3,3′,5,5′-tetracarboxylic acid and N-donor ligands: Synthesis, structures, and magnetic properties. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
34
|
A stable Ni-based coordination polymer used as anode materials for supercapacitors. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Wu Y, Ren W, Li Y, Gao J, Yang X, Yao J. Zeolitic Imidazolate Framework-67@Cellulose aerogel for rapid and efficient degradation of organic pollutants. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121621] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Wang D, Zhao Z, Lin S, Song Y, Su Z, Chen J. The 3D POMOFs based two AsIII-capped Keggin arsenomolybdates with four VIV substituted: Synthesis, structures and properties. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
37
|
Boorboor Ajdari F, Kowsari E, Niknam Shahrak M, Ehsani A, Kiaei Z, Torkzaban H, Ershadi M, Kholghi Eshkalak S, Haddadi-Asl V, Chinnappan A, Ramakrishna S. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213441] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
|
39
|
Functional metal–organic frameworks constructed from triphenylamine-based polycarboxylate ligands. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213354] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Novel zinc(II) coordination polymers (CPs) based on flexible aliphatic carboxylic acids and an N-donor ligand for fluorescence sensors. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119839] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Wang YN, Wang SD, Yang LL, Zhao YF, Yang QF. A luminescent cadmium coordination polymer for highly sensitive detection of Ascorbic Acid. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121519] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Mohsen M, Naeem I, Awaad M, Tantawy H, Baraka A. A cadmium-imidazole coordination polymer as solid state buffering material: Synthesis, characterization and its use for photocatalytic degradation of ionic dyes. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
43
|
Yang J, Chen L, Li W, Chen G, Wang L, Zhao S. A novel self-supported structure of Ce-UiO-66/TNF in a redox electrolyte with high supercapacitive performance. J Colloid Interface Sci 2020; 573:55-61. [PMID: 32276231 DOI: 10.1016/j.jcis.2020.03.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 10/24/2022]
Abstract
A novel self-supported structure of Ce-UiO-66/TNF was firstly synthesized by growing Ce-UiO-66 on a TNF substrate. This novel Ce-UiO-66/TNF material was proved to possess a high supercapacitive performance in the redox electrolyte of Fe(CN)63-/4-, and it was also the first study for Ce-UiO-66 material on the supercapacitor application. High specific capacitances of 6.9 and 2.5 Fcm-2 can be achieved at large current densities of 20 and 80 mAcm-2, respectively. After 10,000 charge-discharge cycles, the capacitance retention can be kept at 95% and the coulomb efficiency can be maintained over 98%. Such outstanding electrochemical performance may be related to the redox property of the electrolyte, high specific surface area of the Ce-UiO-66 material, porous characteristic of the TNF substrate and self-supported structure of the whole electrode.
Collapse
Affiliation(s)
- Jie Yang
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 450003, China.
| | - Leishan Chen
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 450003, China
| | - Weiwei Li
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 450003, China
| | - Gairong Chen
- Department of Chemistry and Chemical Engineering, Xinxiang University, Xinxiang, Henan 450003, China
| | - Lizhen Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, China.
| | - Shuai Zhao
- Department of Science, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
44
|
Chen H, Li Y, Liu H, Ji Q, Zou L, Gao J. Metal-organic framework-derived sulfur and nitrogen dual-doped bimetallic carbon nanotubes as electrocatalysts for oxygen evolution reaction. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
45
|
Three isostructural Zn/Ni nitro-containing metal-organic frameworks for supercapacitor. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Xu B, Yan L, Hu HM, Bai C, Xue LL, He S. Construction of lanthanide coordination polymers based on mixed terpyridyl and dicarboxylate ligands: Syntheses, structures and luminescent properties. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
47
|
A double-layered neutral cadmium-organic framework for selective adsorption of cationic organic dyes through electrostatic affinity. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121376] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
In situ synthesis and characterization of a series of new pyridyl containing complexes based on 3d metals: from oligomer to 3D framework. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Fast and sensitive fluorescent detection of nitrite based on an amino-functionalized MOFs of UiO-66-NH2. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
50
|
Wang K, Li Q, Ren Z, Li C, Chu Y, Wang Z, Zhang M, Wu H, Zhang Q. 2D Metal-Organic Frameworks (MOFs) for High-Performance BatCap Hybrid Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001987. [PMID: 32583970 DOI: 10.1002/smll.202001987] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/16/2020] [Indexed: 06/11/2023]
Abstract
Two identical layered metal-organic frameworks (MOFs) (CoFRS and NiFRS) are constructed by using flexible 1,10-bis(1,2,4-triazol-1-yl)decane as pillars and 1,4-benzenedicarboxylic acid as rigid linkers. The single-crystal structure analysis indicates that the as-synthesized MOFs possess fluctuant 2D networks with large interlayer lattices. Serving as active electrode elements in supercapacitors, both MOFs deliver excellent rate capabilities, high capacities, and longstanding endurances. Moreover, the new intermediates in two electrodes before and after long-lifespan cycling are also examined, which cannot be identified as metal hydroxides in the peer reports. After assembled into battery-supercapacitor (BatCap) hybrid devices, the NiFRS//activated carbon (AC) device displays better electrochemical results in terms of gravimetric capacitance and cycling performance than CoFRS//AC devices, and a higher energy-density value of 28.7 Wh kg-1 compared to other peer references with MOFs-based electrodes. Furthermore, the possible factors to support the distinct performances are discussed and analyzed.
Collapse
Affiliation(s)
- Kuaibing Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639678, Singapore
| | - Qingqing Li
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Zhujuan Ren
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Chao Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639678, Singapore
| | - Yang Chu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Zikai Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Mingdao Zhang
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing, 210044, P. R. China
| | - Hua Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P. R. China
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639678, Singapore
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| |
Collapse
|