1
|
Notash B, Farhadi Rodbari M, Kubicki M. Water Content-Controlled Formation and Transformation of Concomitant Pseudopolymorph Coordination Polymers. ACS OMEGA 2023; 8:13140-13152. [PMID: 37065012 PMCID: PMC10099119 DOI: 10.1021/acsomega.3c00405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Two concomitant pseudopolymorph coordination polymers {[Cd2L2(OAc)4]·2DMSO} n (1) and {[CdL(OAc)2]·2.75H2O} n (2) were synthesized by self-assembly of 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene (L) and cadmium acetate in DMSO. Single-crystal X-ray diffraction confirmed that 1D ladder structural motifs exist for pseudopolymorphs 1 and 2 which contain DMSO and water guest molecules, respectively. Our study illustrated the active role of solvent water content in obtaining compound 2. We find that the presence of water as an impurity in the DMSO solvent creates the possibility of formation of concomitant pseudopolymorph coordination polymers which is a unique event. Furthermore, our analyses showed the effect of environmental humidity on the transformation of unstable compound 1. 1D ladder pseudopolymorphic compound 1 could be transformed to guest-free 1D linear compound [CdL(OAc)2(H2O)] n (3') (the powder form of single crystals of 3) through a scarce case of water absorption from air. Also, the crystalline material of coordination polymer 3 was transformed to coordination polymer 2 through the dissolution-recrystallization structural transformation process in DMF or DMSO. Our study clarified that the amount of water in the reaction container can control the formation of one of the compounds 2 or 3. In the presence of a significant amount of water, compound 3 (coordinated water) will be produced, whereas if a small amount of water is present, compound 2 (uncoordinated water) is prepared as an exclusive product.
Collapse
Affiliation(s)
- Behrouz Notash
- Department
of Inorganic Chemistry, Shahid Beheshti
University, 1983969411 Tehran, Iran
| | - Mona Farhadi Rodbari
- Department
of Inorganic Chemistry, Shahid Beheshti
University, 1983969411 Tehran, Iran
| | - Maciej Kubicki
- Faculty
of Chemistry, Adam Mickiewicz University, Poznań, Uniwersytetu Poznanskiego
8, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Wang YM, Lin XC, Mo KM, Xie M, Huang YL, Ning GH, Li D. An Atomically Precise Pyrazolate-Protected Copper Nanocluster Exhibiting Exceptional Stability and Catalytic Activity. Angew Chem Int Ed Engl 2023; 62:e202218369. [PMID: 36573694 DOI: 10.1002/anie.202218369] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 12/28/2022]
Abstract
The synthesis of atomically precise copper nanoclusters (Cu-NCs) with high chemical stability is a prerequisite for practical applications, yet still remains a long-standing challenge. Herein, we have prepared a pyrazolate-protected Cu-NC (Cu8), which exhibited exceptional chemical stability either in solid-state or in solution. The crystals of Cu8 are still suitable for single crystal X-ray diffraction analysis even after being treated with boiling water, 8 wt % H2 O2 , high concentrated acid (1 M HCl) or saturated base (≈20 M KOH), respectively. More importantly, the structure of Cu8 in solution also remained intact toward oxygen, organic acid (100 eq. HOAc) or base (400 eq. dibutylamine) confirmed by 1 H NMR and UV/Vis analysis. Taking advantage of high alkali-resistant, Cu8 illustrates excellent catalytic activity for the synthesis of indolizines, and it can be reused for at least 10 cycles without losing catalytic performance.
Collapse
Affiliation(s)
- Yu-Mei Wang
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Xiao-Chun Lin
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Kai-Ming Mo
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Mo Xie
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Guo-Hong Ning
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Dan Li
- Department College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
3
|
Tunsrichon S, Youngme S, Boonmak J. Ligand-Driven Self-Assembly of Iodine-Based Cd(II) Complexes via Dissolution-Recrystallization Structural Transformation. CrystEngComm 2022. [DOI: 10.1039/d2ce00395c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The iodo-cadmium(II) complexes with a diversity of crystalline architectures have been prepared via a combination of a Cd(II) precursor and varied iodine solutions. The iodo-Cd(II) complexes with 1,10-phenantroline were assembled...
Collapse
|
4
|
Notash B, Farhadi Rodbari M, Gallo G, Dinnebier R. Humidity-Induced Structural Transformation in Pseudopolymorph Coordination Polymers. Inorg Chem 2021; 60:9212-9223. [PMID: 34048237 DOI: 10.1021/acs.inorgchem.1c01360] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three cadmium coordination polymers, namely, {[CdL(OAc)2](C2H5OH)}n (1), {[CdL(OAc)2](CH3CN)}n (2), and [CdL(OAc)2(H2O)]n (3), were synthesized by an exoditopic 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene Schiff base ligand (L) and cadmium acetate in the presence of different solvent systems. Single-crystal X-ray diffraction, powder X-ray diffraction, and thermogravimetric analysis showed that 1D ladder pseudopolymorphic compounds (1 and 2) transformed to the solvent-free 1D linear compound 3 through a rare case of water absorption from air at room temperature. Interestingly, compound 3 was transformed to compound 1 through a dissolution-recrystallization structural transformation process. The results illustrated that solvents and humidity have an important role in the formation of pseudopolymorphs with the same or different structural motifs.
Collapse
Affiliation(s)
- Behrouz Notash
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, 19839 69411, Tehran, Iran
| | - Mona Farhadi Rodbari
- Department of Inorganic Chemistry and Catalysis, Shahid Beheshti University, 19839 69411, Tehran, Iran
| | - Gianpiero Gallo
- Max Planck Institute for Solid State Research, Heisenberg strasse 1, D-70569 Stuttgart, Germany.,Department of Chemistry and Biology "A. Zambelli", University of Salerno, Via Giovanni Paolo II 132, Fiscano 84084, Salerno, Italy
| | - Robert Dinnebier
- Max Planck Institute for Solid State Research, Heisenberg strasse 1, D-70569 Stuttgart, Germany
| |
Collapse
|
5
|
Yang L, Wang L, Lv X, Chen JH, Wang Y, Yang G. Complexation of triangular silver(I) or copper(I) nitropyrazolates with dibenzothiophenes having potential use in adsorptive desulfurization. Dalton Trans 2021; 50:2915-2927. [PMID: 33555282 DOI: 10.1039/d0dt04037a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triangular silver(i) and copper(i) 3,5-diethyl-4-nitropyrazolates (abbreviated as [Ag(denpz)]3 or Ag3pz3, and [Cu(denpz)]3 or Cu3pz3), as well as their adducts with dibenzothiophene (DBT), 4,6-dimethyldibenzothiophene (DMDBT) and benzothiophene (BT), have been prepared and characterized by a series of techniques. X-ray analyses show that these adducts are stabilized by MS, MC contacts and ππ stacking interactions. NMR measurements and theoretical calculations indicate that the intensity of interaction between the metal complexes and dibenzothiophenes follows the trend: Ag3pz3-DMDBT > Ag3pz3-DBT > Cu3pz3-DMDBT > Cu3pz3-DBT, which can be understood on the basis of a weak interaction between π-acid (Ag3pz3 or Cu3pz3) and π-base (DBT/DMDBT). Both complexes show good adsorptive ability and reusability toward the removal of DBT and DMDBT from model oil (n-octane), with the maximum adsorption capacity at room temperature being 39 mg S (DMDBT) per g Cu3pz3, 34 mg S (DMDBT) per g Ag3pz3, 40 mg S (DBT) per g Cu3pz3, 36 mg S (DBT) per g Ag3pz3, respectively. Compared to Ag3pz3, Cu3pz3 exhibits higher adsorptive capacities for DBT/DMDBT, which has been attributed to its lower molecular mass.
Collapse
Affiliation(s)
- Lin Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Lihong Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Xingpu Lv
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Jing-Huo Chen
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China.
| | - Guang Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China.
| |
Collapse
|
6
|
Zhang ZY, Su Y, Shi LX, Li SF, Fabunmi F, Li SL, Yu T, Chen ZN, Su Z, Liu HK. Coordination-Bond-Driven Dissolution-Recrystallization Structural Transformation with the Expansion of Cuprous Halide Aggregate. Inorg Chem 2020; 59:13326-13334. [PMID: 32862642 DOI: 10.1021/acs.inorgchem.0c01698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) with cuprous-halide-aggregates have shown superiority as organic LED (OLED) and semiconductor materials, while engineering MOF flexibility by involving the expansion of cuprous aggregates remains a great challenge. In this particular work, a dissolution-recrystallization structural transformation (DRST) with the dramatic growth of CuI-I aggregates, from 2D NJNU-100 to 3D NJNU-101 has been successfully realized. The unsaturated coordination nodes (2-positional nitrogen atoms) in NJNU-100 have been demonstrated to be the driven force for DRST to NJNU-101 via the formation of coordination bonds. The structural transformation process was irreversible and observed with optical microscopy and powder XRD. The expansion of CuI-I aggregates was also computational simulated accompanying with the rotation of the neutral tripodal TTTMB ligand (1,3,5-tris(1,2,4-triazol-1-ylmethyl)-2,4,6-trimethylbenzene) and the reduction of CuII to CuI. Moreover, the intermediate product NJNU-102 was captured by adding the planar molecular anthrancene to shut down the reaction, where only partial 2-positional nitrogen atoms coordinated to the aggregates and the anthrancene was oxidized to anthraquinone. NJNU-102 has further confirmed that DRST involved the breakage and recombination of coordination bonds and the electron transfer. NJNU-100 and NJNU-101 could be applied as semiconductor and OLED materials. This work has provided insights for crystal engineering, especially for the construction of the CuIxXy aggregates, and illustrated that DRST could be controlled with a rational design (as the unsaturated coordination modes).
Collapse
Affiliation(s)
- Zi-You Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Lin-Xi Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shu-Fang Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Florence Fabunmi
- Department of Chemistry, Tennessee Tech University, 1 William L. Jones Drive, Cookeville, Tennessee 38505, United States
| | - Shun-Li Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Tao Yu
- Department of Chemistry, Tennessee Tech University, 1 William L. Jones Drive, Cookeville, Tennessee 38505, United States
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| | - Hong-Ke Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210046, China
| |
Collapse
|
7
|
Lakhi JS, Patterson MR, Dias HVR. Coinage metal metallacycles involving a fluorinated 3,5-diarylpyrazolate. NEW J CHEM 2020. [DOI: 10.1039/d0nj03744c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoluminescent, trinuclear, coinage metal pyrazolates have been isolated using a fluorinated diaryl-pyrazolate.
Collapse
Affiliation(s)
- Jaspreet S. Lakhi
- Department of Chemistry and Biochemistry
- University of Texas at Arlington
- Arlington
- USA
| | - Monika R. Patterson
- Department of Chemistry and Biochemistry
- University of Texas at Arlington
- Arlington
- USA
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry
- University of Texas at Arlington
- Arlington
- USA
| |
Collapse
|