1
|
He B, Wang L, Jin X, Zhang X, Sha R, Liang Y, Wang Y, Xie W, Shi J, Peng H. Porous Agarose Layered Magnetic Graphene Oxide Nanocomposite for Virus RNA Monitoring in Wastewater. Anal Chem 2024; 96:9167-9176. [PMID: 38761141 DOI: 10.1021/acs.analchem.4c01060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
The detection of virus RNA in wastewater has been established as a valuable method for monitoring Coronavirus disease 2019. Carbon nanomaterials hold potential application in separating virus RNA owing to their effective adsorption and extraction capabilities. However, carbon nanomaterials have limited separability under homogeneous aqueous conditions. Due to the stabilities in their nanostructure, it is a challenge to efficiently immobilize them onto magnetic beads for separation. Here, we develop a porous agarose layered magnetic graphene oxide (GO) nanocomposite that is prepared by agglutinating ferroferric oxide (Fe3O4) beads and GO with agarose into a cohesive whole. With an average porous size of approximately 500 nm, the porous structure enables the unhindered entry of virus RNA, facilitating its interaction with the surface of GO. Upon the application of a magnetic field, the nucleic acid can be separated from the solution within a few minutes, achieving adsorption efficiency and recovery rate exceeding 90% under optimized conditions. The adsorbed nucleic acid can then be preserved against complex sample matrix for 3 days, and quantitatively released for subsequent quantitative reverse transcription polymerase chain reaction (RT-qPCR) detection. The developed method was successfully utilized to analyze wastewater samples obtained from a wastewater treatment plant, detecting as few as 10 copies of RNA molecules per sample. The developed aMGO-RT-qPCR provides an efficient approach for monitoring viruses and will contribute to wastewater-based surveillance of community infections.
Collapse
Affiliation(s)
- Benyu He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Lingfeng Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Jin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Zhang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Urban and Environmental Sciences, Northwest University, Xian 710127, China
| | - Rui Sha
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Natasha, Khan A, Rahman UU, Sadaf, Yaseen M, Abumousa RA, Khattak R, Rehman N, Bououdina M, Humayun M. Effective Removal of Nile Blue Dye from Wastewater using Silver-Decorated Reduced Graphene Oxide. ACS OMEGA 2024; 9:19461-19480. [PMID: 38708276 PMCID: PMC11064184 DOI: 10.1021/acsomega.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Nile blue (NB) dye is a highly toxic substance that when discharged into sewage presents a significant risk to the environment and human health. Carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and their nanocomposites, offer considerable potential for eliminating hazardous pollutants from aqueous systems. In this study, we have successfully fabricated bare GO and rGO, and then, the rGO was decorated with silver (Ag) nanoparticles to develop the Ag-rGO composite. The as-prepared materials were characterized by various techniques, such as UV-visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopies, X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and scanning electron microscopy (SEM) to elucidate their structure, morphology, and chemical composition. The pollutant removal performance of the as-prepared materials was evaluated through a batch approach under the effect of various experimental variables for removal of NB dye from wastewater. As obvious, the Ag-rGO composite revealed exceptional performance for NB dye removal from wastewater, with a maximum removal percentage of 94% within 60 min, which is remarkably higher than those of the rGO (i.e., 59%) and GO (i.e., 22%), under the same experimental conditions. The adsorption data was analyzed with thermodynamics, isotherms, and kinetics models to better understand the physicochemical mechanisms driving the effective removal of the NB dye. The results reveal that Ag-rGO nanocomposite exhibit excellent adsorption ability as well as favorable thermodynamic and kinetic parameters for NB dye removal. It was also found that the presence of light enhanced the adsorptive removal of NB while using Ag-rGO as an adsorbent. The present study noted significant reusability of the Ag-rGO nanocomposite, likely due to minimal Ag leaching and/or the robust stability of the Ag-rGO. It is suggested that Ag-rGO-based hybrid materials could serve as promising candidates for efficiently adsorbing and catalytically removing various toxic pollutants from wastewater.
Collapse
Affiliation(s)
- Natasha
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Abbas Khan
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Ubaid Ur Rahman
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Sadaf
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Muhammad Yaseen
- Department
of Chemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Rasha A. Abumousa
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Rozina Khattak
- Department
of Chemistry, Shaheed Benazir Bhutto Women
University Avenue, Larama Charsadda Road Peshawar, Peshawar 00384,Pakistan
| | - Noor Rehman
- Department
of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir(U), Dir Upper 18000,Pakistan
| | - Mohamed Bououdina
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Muhammad Humayun
- Energy,
Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
3
|
Recent advances in development of functional magnetic adsorbents for selective separation of proteins/peptides. Talanta 2023; 253:123919. [PMID: 36126523 DOI: 10.1016/j.talanta.2022.123919] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
Nowadays, proteins separation has attracted great attention in proteomics research. Because the proteins separation is helpful for making an early diagnosis of many diseases. Magnetic nanoparticles are an interesting and useful functional material, and have attracted extensive research interest during the past decades. Because of the excellent properties such as easy surface functionalization, tunable biocompatibility, high saturation magnetization etc, magnetic microspheres have been widely used in isolation of proteins/peptides. Notably, with the rapid development of surface decoration strategies, more and more functional magnetic adsorbents have been designed and fabricated to meet the growing demands of biological separation. In this review, we have collected recent information about magnetic adsorbents applications in selective separation of proteins/peptides. Furthermore, we present a comprehensive prospects and challenges in the field of protein separation relying on magnetic nanoparticles.
Collapse
|
4
|
Dadashi J, Ghasemzadeh MA, Salavati-Niasari M. Recent developments in hydrogels containing copper and palladium for the catalytic reduction/degradation of organic pollutants. RSC Adv 2022; 12:23481-23502. [PMID: 36090397 PMCID: PMC9386442 DOI: 10.1039/d2ra03418b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
The elimination of toxic and hazardous contaminants from different environmental media has become a global challenge, causing researchers to focus on the treatment of pollutants. Accordingly, the elimination of inorganic and organic pollutants using sustainable, effective, and low-cost heterogeneous catalysts is considered as one of the most essential routes for this aim. Thus, many efforts have been devoted to the synthesis of novel compounds and improving their catalytic performance. Recently, palladium- and copper-based hydrogels have been used as catalysts for reduction, degradation, and decomposition reactions because they have significant features such as high mechanical strength, thermal stability, and high surface area. Herein, we summarize the progress achieved in this field, including the various methods for the synthesis of copper- and palladium-based hydrogel catalysts and their applications for environmental remediation. Moreover, palladium- and copper-based hydrogel catalysts, which have certain advantages, including high catalytic ability, reusability, easy work-up, and simple synthesis, are proposed as a new group of effective catalysts. The elimination of toxic and hazardous contaminants from different environmental media has become a global challenge, causing researchers to focus on the treatment of pollutants.![]()
Collapse
Affiliation(s)
- Jaber Dadashi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | | | | |
Collapse
|
5
|
Dramou P, Dahn SL, Wang F, Sun Y, Song Z, Liu H, He H. Current review about design's impact on analytical achievements of magnetic graphene oxide nanocomposites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Illés E, Tombácz E, Hegedűs Z, Szabó T. Tunable Magnetic Hyperthermia Properties of Pristine and Mildly Reduced Graphene Oxide/Magnetite Nanocomposite Dispersions. NANOMATERIALS 2020; 10:nano10122426. [PMID: 33291627 PMCID: PMC7761925 DOI: 10.3390/nano10122426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022]
Abstract
We present a study on the magnetic hyperthermia properties of graphene oxide/magnetite (GO/MNP) nanocomposites to investigate their heat production behavior upon the modification of the oxidation degree of the carbonaceous host. Avoiding the harsh chemical conditions of the regular in situ co-precipitation-based routes, the oppositely charged MNPs and GO nanosheets were combined by the heterocoagulation process at pH ~ 5.5, which is a mild way to synthesize composite nanostructures at room temperature. Nanocomposites prepared at 1/5 and 1/10 GO/MNP mass ratios were reduced by NaBH4 and L-ascorbic acid (LAA) under acidic (pH ~ 3.5) and alkaline conditions (pH ~ 9.3). We demonstrate that the pH has a crucial effect on the LAA-assisted conversion of graphene oxide to reduced GO (rGO): alkaline reduction at higher GO loadings leads to doubled heat production of the composite. Spectrophotometry proved that neither the moderately acidic nor alkaline conditions promote the iron dissolution of the magnetic core. Although the treatment with NaBH4 also increased the hyperthermic efficiency of aqueous GO/MNP nanocomposite suspensions, it caused a drastic decline in their colloidal stability. However, considering the enhanced heat production and the slightly improved stability of the rGO/MNP samples, the reduction with LAA under alkaline condition is a more feasible way to improve the hyperthermic efficiency of magnetically modified graphene oxides.
Collapse
Affiliation(s)
- Erzsébet Illés
- Correspondence: (E.I.); (T.S.); Tel.: +36-62-544-112 (T.S.)
| | | | | | - Tamás Szabó
- Correspondence: (E.I.); (T.S.); Tel.: +36-62-544-112 (T.S.)
| |
Collapse
|
7
|
Jiang H, Li Z, Gan J, Wang L, Li Y. Improved thermal and mechanical properties of bismaleimide nanocomposites via incorporation of a new allylated siloxane graphene oxide. RSC Adv 2020; 10:36853-36861. [PMID: 35517923 PMCID: PMC9057041 DOI: 10.1039/d0ra06621d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/29/2020] [Indexed: 11/21/2022] Open
Abstract
A thermosetting resin system based on bismaleimide (BMI) has been developed via copolymerization with 4,4′-diaminodiphenylsulfone in the presence of a newly synthesized graphene oxide, modified using allylated siloxane (AS-GO). The curing behavior of the AS-GO-containing resin system was evaluated using curing kinetics. The dispersibility of AS-GO in the resin was observed through polarizing optical microscopy (POM), which indicates that AS-GO has good dispersibility in the resin due to GO modified with allylated siloxane which has a good phase compatibility with BMI. The effect of AS-GO on the thermomechanical and mechanical properties of the cured modified resin was also studied. Results of thermogravimetric analysis indicated that the cured sample systems display a high char yield at lower concentrations of AS-GO (≤0.5 wt%) with an improved thermal stability. Using dynamic mechanical analysis, a marked increase in glass transition temperature (Tg) with increasing AS-GO content was observed. Mechanical property analyses revealed a possible effect of AS-GO as a toughener, and the results showed that an addition of 0.3% AS-GO maximized the toughness of the modified resin systems, which was confirmed by analysis of fracture surfaces. A thermosetting resin system based on bismaleimide has been developed via copolymerization of a new allylated siloxane graphene oxide.![]()
Collapse
Affiliation(s)
- Hao Jiang
- School of Materials Science and Engineering, Xi'an Shiyou University Xi'an 710065 P. R. China
| | - Zhao Li
- School of Materials Science and Engineering, Xi'an Shiyou University Xi'an 710065 P. R. China
| | - Jiantuo Gan
- School of Materials Science and Engineering, Xi'an Shiyou University Xi'an 710065 P. R. China
| | - Lei Wang
- School of Materials Science and Engineering, Xi'an Shiyou University Xi'an 710065 P. R. China
| | - Yan Li
- School of Materials Science and Engineering, Xi'an Shiyou University Xi'an 710065 P. R. China
| |
Collapse
|