1
|
Wen L, Liu Z, Zhou L, Liu Z, Li Q, Geng B, Xia Y. Bone and Extracellular Signal-Related Kinase 5 (ERK5). Biomolecules 2024; 14:556. [PMID: 38785963 PMCID: PMC11117709 DOI: 10.3390/biom14050556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/17/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Bones are vital for anchoring muscles, tendons, and ligaments, serving as a fundamental element of the human skeletal structure. However, our understanding of bone development mechanisms and the maintenance of bone homeostasis is still limited. Extracellular signal-related kinase 5 (ERK5), a recently identified member of the mitogen-activated protein kinase (MAPK) family, plays a critical role in the pathogenesis and progression of various diseases, especially neoplasms. Recent studies have highlighted ERK5's significant role in both bone development and bone-associated pathologies. This review offers a detailed examination of the latest research on ERK5 in different tissues and diseases, with a particular focus on its implications for bone health. It also examines therapeutic strategies and future research avenues targeting ERK5.
Collapse
Affiliation(s)
- Lei Wen
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
- Department of Orthopedics and Trauma Surgery, Affiliated Hospital of Yunnan University, Kunming 650032, China
| | - Zirui Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Libo Zhou
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Zhongcheng Liu
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Qingda Li
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Bin Geng
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| | - Yayi Xia
- Department of Orthopedics, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, China; (L.W.); (Z.L.); (L.Z.); (Z.L.); (Q.L.); (B.G.)
- Orthopedic Clinical Medical Research Center and Intelligent Orthopedic Industry Technology Center of Gansu Province, Lanzhou 730030, China
| |
Collapse
|
2
|
Guo Y, Zhao J, Ma X, Cai M, Chi Y, Sun C, Liu S, Song X, Xu K. Phytochemical reduces toxicity of PM2.5: a review of research progress. Nutr Rev 2024; 82:654-663. [PMID: 37587082 DOI: 10.1093/nutrit/nuad077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
Studies have shown that exposure to fine particulate matter (PM2.5) affects various cells, systems, and organs in vivo and in vitro. PM2.5 adversely affects human health through mechanisms such as oxidative stress, inflammatory response, autophagy, ferroptosis, and endoplasmic reticulum stress. Phytochemicals are of interest for their broad range of physiological activities and few side effects, and, in recent years, they have been widely used to mitigate the adverse effects caused by PM2.5 exposure. In this review, the roles of various phytochemicals are summarized, including those of polyphenols, carotenoids, organic sulfur compounds, and saponin compounds, in mitigating PM2.5-induced adverse reactions through different molecular mechanisms, including anti-inflammatory and antioxidant mechanisms, inhibition of endoplasmic reticulum stress and ferroptosis, and regulation of autophagy. These are useful as a scientific basis for the prevention and treatment of disease caused by PM2.5.
Collapse
Affiliation(s)
- Yulan Guo
- School of Public Health, Jilin University, Changchun, China
| | - Jinbin Zhao
- School of Public Health, Jilin University, Changchun, China
| | - Xueer Ma
- School of Public Health, Jilin University, Changchun, China
| | - Ming Cai
- School of Public Health, Jilin University, Changchun, China
| | - Yuyang Chi
- School of Public Health, Jilin University, Changchun, China
| | - Chunmeng Sun
- School of Public Health, Jilin University, Changchun, China
| | - Shitong Liu
- School of Public Health, Jilin University, Changchun, China
| | - Xiuling Song
- School of Public Health, Jilin University, Changchun, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, China
- The Research Center of Reproduction and Translational Medicine of Hunan Province, Changsha, China
| |
Collapse
|
3
|
Zhang J, Li W, Li H, Liu W, Li L, Liu X. Selenium-Enriched Soybean Peptides as Novel Organic Selenium Compound Supplements: Inhibition of Occupational Air Pollution Exposure-Induced Apoptosis in Lung Epithelial Cells. Nutrients 2023; 16:71. [PMID: 38201901 PMCID: PMC10780830 DOI: 10.3390/nu16010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The occupational groups exposed to air pollutants, particularly PM2.5, are closely linked to the initiation and advancement of respiratory disorders. The aim of this study is to investigate the potential protective properties of selenium-enriched soybean peptides (Se-SPeps), a novel Se supplement, in mitigating apoptosis triggered by PM2.5 in A549 lung epithelial cells. The results indicate a concentration-dependent reduction in the viability of A549 cells caused by PM2.5, while Se-SPeps at concentrations of 62.5-500 µg/mL showed no significant effect. Additionally, the Se-SPeps reduced the production of ROS, proinflammatory cytokines, and apoptosis in response to PM2.5 exposure. The Se-SPeps suppressed the PM2.5-induced upregulation of Bax/Bcl-2 and caspase-3, while also restoring reductions in p-Akt in A549 cells. The antiapoptotic effects of Se-SPeps have been found to be more effective compared to SPeps, SeMet, and Na2SeO3 when evaluated at an equivalent protein or Se concentration. Our study results furnish evidence that supports the role of Se-SPeps in reducing the harmful effects of PM2.5, particularly in relation to its effect on apoptosis, oxidative stress, and inflammation.
Collapse
Affiliation(s)
- Jian Zhang
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wenhui Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Wanlu Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
| | - Lu Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (J.Z.); (W.L.); (W.L.); (L.L.); (X.L.)
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
4
|
Wang Y, Zhang Y, Li Y, Kou X, Xue Z. Mechanisms of Biochanin A Alleviating PM2.5 Organic Extracts-Induced EMT of A549 Cells through the PI3K/Akt Pathway. JOURNAL OF NATURAL PRODUCTS 2022; 85:2290-2301. [PMID: 36181478 DOI: 10.1021/acs.jnatprod.2c00457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important step in tumor progression, which enables tumor cells to acquire migration and invasion characteristics. The aim of this study was to investigate the mechanism of biological biochanin A (BCA) in ameliorating fine particulate matter (PM2.5) lung injury. The results showed that PM2.5 could induce spindle-like changes in cell morphology, causing the ability of migration and invasion. However, they were significantly inhibited by BCA treatment (10/20/30 μm). After BCA treatment, the release and transcription of chemokine CXCL12 and its receptor gene CXCR4 were inhibited, and the release of growth inducer TGF-β1 was significantly reduced. In addition, BCA promoted the transcription of E-cadherin and β-catenin, inhibiting the expression of N-cadherin, vimentin, and fibronectin, and down-regulated the expression of MMP-2/9. We found that BCA effectively interfered with the PI3K/Akt signaling pathway activated by PM2.5. In conclusion, PM2.5 can induce EMT in lung cancer cells, and BCA may reverse this process by activating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China
| | - Yixia Zhang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China
| | - Yonghui Li
- Cardiovascular Department, Tianjin Fourth Center Hospital, 300140, Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350, Tianjin, China
| |
Collapse
|
5
|
Felix FB, Vago JP, Beltrami VA, Araújo JMD, Grespan R, Teixeira MM, Pinho V. Biochanin A as a modulator of the inflammatory response: an updated overview and therapeutic potential. Pharmacol Res 2022; 180:106246. [PMID: 35562014 DOI: 10.1016/j.phrs.2022.106246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/19/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Uncontrolled inflammation and failure to resolve the inflammatory response are crucial factors involved in the progress of inflammatory diseases. Current therapeutic strategies aimed at controlling excessive inflammation are effective in some cases, though they may be accompanied by severe side effects, such as immunosuppression. Phytochemicals as a therapeutic alternative can have a fundamental impact on the different stages of inflammation and its resolution. Biochanin A (BCA) is an isoflavone known for its wide range of pharmacological properties, especially its marked anti-inflammatory effects. Recent studies have provided evidence of BCA's abilities to activate events essential for resolving inflammation. In this review, we summarize the most recent findings from pre-clinical studies of the pharmacological effects of BCA on the complex signaling network associated with the onset and resolution of inflammation and BCA's potential protective functionality in several models of inflammatory diseases, such as arthritis, pulmonary disease, neuroinflammation, and metabolic disease.
Collapse
Affiliation(s)
- Franciel Batista Felix
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Juliana Priscila Vago
- Experimental Rheumatology, Department of Rheumatology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Vinícius Amorim Beltrami
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Renata Grespan
- Cell Migration Laboratory, Department of Physiology, Universidade Federal de Sergipe, São Cristovão, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
6
|
Wang J, Zhang Y, Zhang Z, Yu W, Li A, Gao X, Lv D, Zheng H, Kou X, Xue Z. Toxicology of respiratory system: Profiling chemicals in PM 10 for molecular targets and adverse outcomes. ENVIRONMENT INTERNATIONAL 2022; 159:107040. [PMID: 34922181 DOI: 10.1016/j.envint.2021.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/13/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Numerous studies have shown that the increasing trend of respiratory diseases have been closely associated with the endogenous toxic chemicals (polycyclic aromatic hydrocarbons, heavy metal ions, etc.) in PM10. In the present study, we aim to determine the strong correlations between the chemicals in PM10 and the adverse consequences. We used the ChemView DB, the ToxRef DB and a comprehensive literature analysis to collect, identify, and evaluate the chemicals in PM10 and their adverse effects on respiratory system, and then used the ToxCast DB to analyze their bioactivity and key targets through 1192 molecular targets and cell characteristic endpoints. Meanwhile, the bioinformatics analysis were carried out on the molecular targets to screen out prevention and treatment targets. A total of 310 chemicals related to the respiratory system were identified. An unsupervised two-directional heatmap was constructed based on hierarchical clustering of 227 chemicals by their effect scores. A subset of 253 chemicals with respiratory system toxicity had in vitro bioactivity on 318 molecular targets that could be described, clustered and annotated in the heatmap and bipartite network, which were analyzed based on the protein information in UniProt KB database and the software of GO, STRING, and KEGG. These results showed that the chemicals in PM10 have strong correlation with different types of respiratory system injury. The main pathways of respiratory system injury caused by PM10 are the Calcium signaling pathway, MAPK signaling pathway, and PI3K-AKT signaling pathway, and the core proteins in which are likely to be the molecular targets for the prevention and treatment of damage caused by PM10.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Yixia Zhang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin 300384, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Ang Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xin Gao
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Danyu Lv
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Huaize Zheng
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| |
Collapse
|
7
|
Wang J, Li Y, Li A, Liu RH, Gao X, Li D, Kou X, Xue Z. Nutritional constituent and health benefits of chickpea (Cicer arietinum L.): A review. Food Res Int 2021; 150:110790. [PMID: 34865805 DOI: 10.1016/j.foodres.2021.110790] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/08/2021] [Accepted: 10/24/2021] [Indexed: 11/19/2022]
Abstract
Chickpea (Cicer arietinum L.), an annual plant of the Fabaceae family, is mainly grown in temperate and semiarid regions. Its biological activity and beneficial contribution to human health have been scientifically confirmed as an essential source of nutritional components. The objective of this review was to summarize and update latest available scientific data and information, on bioactive components in chickpea, bio-activities, and molecular mechanisms, which has mainly focused on the detection of relevant biochemical indicators, the regulation of signaling pathways, essential genes and proteins. The studies have shown that chickpea have significant multifunctional activities, which are closely related to the functionally active small molecule peptides and phytochemicals of chickpea. Significantly, numerous studies have only addressed the functional activity and mechanisms of single active components of chickpea, however, overlooking the synergy and antagonism between chickpea components, changes of functional active components in different processing methods, as well as the active form of the substances after human digestion and metabolism. Additionally, due to limitations in research methods and techniques, the structure of most functional active substances have not been determined, which makes it difficult to conduct interaction mechanism studies. Consequently, the significant bio-activity of the functional components of chickpea, synergistic and antagonistic effects and activity differences between bioactive components should be further studied.
Collapse
Affiliation(s)
- Junyu Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Yonghui Li
- Cardiovascular Department, Tianjin Fourth Center Hospital, Tianjin 300140, China.
| | - Ang Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Rui Hai Liu
- Department of Food Science, Stocking Hall, Cornell University, Ithaca, NY 14853, USA.
| | - Xin Gao
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Dan Li
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| | - Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, 300350 Tianjin, China.
| |
Collapse
|
8
|
Aboushanab SA, El-Far AH, Narala VR, Ragab RF, Kovaleva EG. Potential therapeutic interventions of plant-derived isoflavones against acute lung injury. Int Immunopharmacol 2021; 101:108204. [PMID: 34619497 DOI: 10.1016/j.intimp.2021.108204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that possibly leads to high morbidity and mortality as no therapy exists. Several natural ingredients with negligible adverse effects have recently been investigated to possibly inhibit the inflammatory pathways associated with ALI at the molecular level. Isoflavones, as phytoestrogenic compounds, are naturally occurring bioactive compounds that represent the most abundant category of plant polyphenols (Leguminosae family). A broad range of therapeutic activities of isoflavones, including antioxidants, chemopreventive, anti-inflammatory, antiallergic and antibacterial potentials, have been extensively documented in the literature. Our review exclusively focuses on the possible anti-inflammatory, antioxidant role of botanicals'-derived isoflavones against ALI and their immunomodulatory effect in experimentally induced ALI. Despite the limited scope covering their molecular mechanisms, isoflavones substantially contributed to protecting from ALI via inhibiting toll-like receptor 4 (TLR4)/Myd88/NF-κB pathway and subsequent cytokines, chemokines, and adherent proteins. Nonetheless, future research is suggested to fill the gap in elucidating the protective roles of isoflavones to alleviate ALI concerning antioxidant potentials, inhibition of the inflammatory pathways, and associated molecular mechanisms.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Rokia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| |
Collapse
|
9
|
Xue Z, Wang Y, Yu W, Zhang Z, Kou X. Research Advancement of Natural Active Components in Alleviating Lung Damage Induced by PM2.5. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1938602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhaohui Xue
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yumeng Wang
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Zhijun Zhang
- National Engineering Technology Research Center for Preservation of Agricultural Products; Key Laboratory of Storage of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Tianjin, China
| | - Xiaohong Kou
- Department of Food Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
10
|
Xue Z, Gao X, Yu W, Zhang Q, Song W, Li S, Zheng X, Kou X. Biochanin A alleviates oxidative damage caused by the urban particulate matter. Food Funct 2021; 12:1958-1972. [PMID: 33496707 DOI: 10.1039/d0fo02582h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Urban particulate matter (UPM), an air pollutant-absorbing toxic substance, can access alveoli, leading to pulmonary diseases. Studies have shown that the water-soluble components of UPM (WS-UPM), containing main toxic substances, can induce oxidative damage in lung cells. In this study, the UPM particle size and composition were detected via instrumental analysis. The isoflavones (biochanin A (BCA), formononetin and daidzein) from chickpeas possess biological antioxidant properties. The present study aimed to investigate the mechanism of the oxidative damage induced by WS-UPM, and the protective role of isoflavones in human alveolar basal epithelial cells. The antioxidant activity of BCA, formononetin and daidzein was investigated through the total reduction capacity, diphenylpicrylhydrazine radical (DPPH), superoxide radical, and hydroxyl radical scavenging capacity detection. We also established cell models in vitro to further explore the BCA-protective mechanism. BCA presented a significant protection, and increased the levels of antioxidant makers including superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH). The effects were also reflected as the reduction of malondialdehyde (MDA) and nitric oxide (NO). Moreover, results obtained from RT-PCR and western blot techniques revealed that MEK5/ERK5 played an indispensable role in regulating the antioxidant effect of BCA, alleviating WS-UPM-induced lung injury. Furthermore, BCA mitigated WS-UPM-exposed damage through upregulating the Nrf2 signaling pathway to enhance the antioxidase expression downstream of Nrf2. In summary, our findings indicated that the WS-UPM-induced pulmonary disease was involved in oxidative stress and the MEK5/ERK5-Nrf2 signaling pathway, and BCA regulated the WS-UPM-induced lung damage via upregulation of the MEK5/ERK5-Nrf2 pathway.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xin Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Wancong Yu
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China
| | - Qian Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Weichen Song
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Shihao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xu Zheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|