1
|
Wang G, Cao L, Li S, Zhang M, Li Y, Duan J, Li Y, Hu Z, Wu J, Ni J, Lan D, Li T, Lu J. Gut microbiota dysbiosis-mediated ceramides elevation contributes to corticosterone-induced depression by impairing mitochondrial function. NPJ Biofilms Microbiomes 2024; 10:111. [PMID: 39468065 PMCID: PMC11519513 DOI: 10.1038/s41522-024-00582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
The role of gut microbiota (GM) dysbiosis in the pathogenesis of depression has received widespread attention, but the mechanism remains elusive. Corticosterone (CORT)-treated mice showed depression-like behaviors, reduced hippocampal neurogenesis, and altered composition of the GM. Fecal microbial transplantation from CORT-treated mice transferred depression-like phenotypes and their dominant GM to the recipients. Fecal metabolic profiling exposed remarkable increase of gut ceramides in CORT-treated and recipient mice. Oral gavage with Bifidobacterium pseudolongum and Lactobacillus reuteri could induce elevations of gut ceramides in mice. Ceramides-treated mice showed depressive-like phenotypes, significant downregulation of oxidative phosphorylation-associated genes, and hippocampal mitochondrial dysfunction. Our study demonstrated a link between chronic exposure to CORT and its impact on GM composition, which induces ceramides accumulation, ultimately leading to hippocampal mitochondrial dysfunction. This cascade of events plays a critical role in reducing adult hippocampal neurogenesis and is strongly associated with the development of depression-like behaviors.
Collapse
Affiliation(s)
- Guanhao Wang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lining Cao
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shuanqing Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meihui Zhang
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingqi Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinjin Duan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - You Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhangsen Hu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiaan Wu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Danmei Lan
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Tianming Li
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianfeng Lu
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
- Suzhou Institute of Tongji University, Suzhou, China.
| |
Collapse
|
2
|
Pourmousavi L, Asadi RH, Zehsaz F, Jadidi RP. Potential therapeutic effects of crocin. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7395-7420. [PMID: 38758225 DOI: 10.1007/s00210-024-03131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 05/18/2024]
Abstract
Crocin, a natural bioactive compound derived from saffron (Crocus sativus) and other Crocus genera, has gained significant attention recently due to its potential therapeutic properties. The multifaceted nature of crocin's biological effects has piqued the interest of researchers and health enthusiasts, prompting further investigations into its mechanisms of action and therapeutic applications. This review article comprehensively explores the emerging evidence supporting crocin's role as a promising ally in protecting against metabolic disorders. The review covers the molecular mechanisms underlying crocin's beneficial effects and highlights its potential applications in preventing and treating diverse pathological conditions. Understanding the mechanisms through which crocin exerts its protective effects could advance scientific knowledge and offer potential avenues for developing novel therapeutic interventions. As we uncover the potential of crocin as a valuable ally in the fight against disorders, it becomes evident that nature's palette holds remarkable solutions for enhancing our health.
Collapse
Affiliation(s)
- Laleh Pourmousavi
- Department of Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Farzad Zehsaz
- Department of Sport Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | |
Collapse
|
3
|
Guo Y, Cai W, Xie W, Xu Y, Li X, Yu C, Wu Q. Sodium houttuyfonate modulates the lung Th1/Th2 balance and gut microbiota to protect against pathological changes in lung of ovalbumin-induced asthmatic mice. J Asthma 2024:1-13. [PMID: 39021077 DOI: 10.1080/02770903.2024.2380525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE The gut-lung axis involves microbial and product interactions between the lung and intestine. Antibiotics for chronic asthma can cause intestinal dysbiosis, disrupting this axis. Sodium houttuyfonate (SH) has diverse biological activities, including modifying gut microbiota, antibacterial, and anti-inflammatory. This study aims to explore the relationship between SH, CD4+ T cells, and gut microbiota. METHODS Allergic asthma was experimentally induced in mice through injection and inhalation of ovalbumin. After the administration of different amounts of SH, ELISA was utilized to ascertain the levels of inflammatory cytokines in the serum, flow cytometry was used to examine the levels of Th1/Th2 cytokines in CD4+ cells from lung tissues. The expression of T-bet and GATA3 in lung tissue was determined by Western blotting and quantitative real-time PCR assay. Gut microbiota was determined by 16S rRNA gene sequencing. RESULTS The results showed that SH can alleviate pulmonary injury in asthmatic mice, reducing serum levels of IL-4, IL-5, and IL-13 while simultaneously increasing IFN-γ. Furthermore, SH has been observed to modulate the balance of Th1/Th2 cells by up-regulating the mRNA and protein expression of T-bet but down-regulating GATA3 in the lung tissues of asthmatic mice, thereby promoting the differentiation of Th1 cells. Additionally, SH can regulate the variety and composition of gut microbiota especially genus Akkermansia in asthmatic mice. CONCLUSION SH can alleviate asthma through the regulation of Th1/Th2 cells and gut microbiota.
Collapse
Affiliation(s)
- Yanping Guo
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Cai
- School of Pharmacy, Zhejiang Pharmaceutical University, Ningbo, China
| | - Wei Xie
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Yunlu Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuejian Li
- School of Pharmacy, Hangzhou Medical College, Hangzhou, China
| | - Chenhuan Yu
- Experimental animal platform, Hangzhou Institute of Medicine Chinese Academy of Sciences, Hangzhou, China
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Qiaofeng Wu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Yaribeygi H, Maleki M, Rashid-Farrokhi F, Abdullahi PR, Hemmati MA, Jamialahmadi T, Sahebkar A. Modulating effects of crocin on lipids and lipoproteins: Mechanisms and potential benefits. Heliyon 2024; 10:e28837. [PMID: 38617922 PMCID: PMC11015417 DOI: 10.1016/j.heliyon.2024.e28837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Dyslipidemia poses a significant risk to cardiovascular health in both diabetic and non-diabetic individuals. Therefore, it is crucial to normalize lipid homeostasis in order to prevent or minimize complications associated with dyslipidemia. However, pharmacological interventions for controlling lipid metabolism often come with adverse effects. As an alternative, utilizing herbal-based agents, which typically have fewer side effects, holds promise. Crocin, a naturally occurring nutraceutical, has been shown to impact various intracellular pathways, reduce oxidative stress, and alleviate inflammatory processes. Recent evidence suggests that crocin may also confer lipid-related benefits and potentially contribute to the normalization of lipid homeostasis. However, the specific advantages and the cellular pathways involved are not yet well understood. In this review, we present the latest findings regarding the lipid benefits of crocin, which could be instrumental in preventing or reducing disorders associated with dyslipidemia. Additionally, we explore the potential cellular mechanisms and pathways that mediate these lipid benefits.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farin Rashid-Farrokhi
- CKD Research Centre, Shahid Beheshti University of Medical Science, IranNephrology Department, Masih Daneshvari Hospital, Telemedicine Research Center, National Research Institute of Tuberculosis and Lung Disease, Tehran, Iran
| | | | - Mohammad Amin Hemmati
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
- Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Zhang Q, Guan G, Liu J, Hu W, Jin P. Gut microbiota dysbiosis and decreased levels of acetic and propionic acid participate in glucocorticoid-induced glycolipid metabolism disorder. mBio 2024; 15:e0294323. [PMID: 38226811 PMCID: PMC10865841 DOI: 10.1128/mbio.02943-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/28/2023] [Indexed: 01/17/2024] Open
Abstract
Long-term/high-dose glucocorticoid (GC) use results in glycolipid metabolism disorder, which severely limits its clinical application. The role of the gut microbiota and its metabolites in GC-induced glycolipid metabolism disorder remains unclear. Our previous human study found that obvious gut microbiota dysbiosis characterized by an increasing abundance of Proteobacteria and a decreased abundance of Lachnospiraceae and Faecalibacterium were observed in patients with endogenous hypercortisolism. In this study, we established a mouse model of GC-induced glycolipid metabolism disorder (Dex group) and found that the relative abundances of Proteobacteria and Parasuttrerella were increased, while the abundances of Lachnospiraceae, Faecalibacterium, and Lachnospiraceae_NK4A136_group were decreased significantly in the Dex group. Compared with the control group, serum total short-chain fatty acids (SCFAs), acetic acid, propionic acid, and GLP-1 levels were all decreased in the Dex group. The mRNA expression of the GPR41 receptor and Pcsk1 in the colon was significantly decreased in the Dex group. Furthermore, GC-induced glycolipid metabolism disorder could be alleviated by depletion of the gut microbiota or fecal bacteria transplantation with control bacteria. The abundances of Lachnospiraceae_NK4A136_group and the serum GLP-1 levels were significantly increased, while the abundances of Proteobacteria and Parasutterella were significantly decreased after fecal bacteria transplantation with control bacteria. Our work indicates that gut microbiota dysbiosis and decreased levels of serum acetic acid and propionic acid may participate in GC-induced glycolipid metabolism disorder. These findings may provide novel insights into the prevention and treatment of GC-induced metabolic disorders.IMPORTANCEThe role of the gut microbiota in glucocorticoid (GC)-induced glycolipid metabolism disorder remains unclear. In our study, gut microbiota dysbiosis characterized by an increased abundance of Proteobacteria/Parasuttrerella and a decreased abundance of Lachnospiraceae_NK4A136_group was observed in mice with GC-induced glycolipid metabolism disorder. Some bacteria were shared in our previous study in patients with endogenous hypercortisolism and the mouse model used in the study. Furthermore, the depletion of the gut microbiota and fecal bacteria transplantation with control bacteria could alleviate GC-induced glycolipid metabolism disorder. Plasma acetic acid, propionic acid, and GLP-1 and the mRNA expression of the GPR41 receptor and Pcsk1 in the colon were decreased significantly in mice with GC-induced glycolipid metabolism disorder, which indicated that the gut microbiota/SCFA/GPR41/GLP-1 axis may participate in GC-induced glycolipid metabolism disorder. Our findings indicate that the gut microbiota may serve as a novel therapeutic target for GC-related metabolic disorders.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gaopeng Guan
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Liu
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenmu Hu
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Jin
- Department of Endocrinology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Ma MH, Gao LL, Chen CB, Gu FL, Wu SQ, Li F, Han BX. Dendrobium huoshanense Polysaccharide Improves High-Fat Diet Induced Liver Injury by Regulating the Gut-Liver Axis. Chem Biodivers 2023; 20:e202300980. [PMID: 37831331 DOI: 10.1002/cbdv.202300980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023]
Abstract
Dendrobium huoshanense is an important Traditional Chinese medicine that thickens the stomach and intestines. Its active ingredient Dendrobium huoshanense polysaccharide (DHP), was revealed to relieve the symptoms of liver injury. However, its mechanism of action remains poorly understood. This study aimed to investigate the mechanism of DHP in protecting the liver. The effects of DHP on lipid levels, liver function, and intestinal barrier function were investigated in mice with high-fat diet-induced liver damage. Changes in the gut flora and their metabolites were analyzed using 16S rRNA sequencing and metabolomics. The results showed that DHP reduced lipid levels, liver injury, and intestinal permeability. DHP altered the intestinal flora structure and increased the relative abundance of Bifidobacterium animalis and Clostridium disporicum. Furthermore, fecal metabolomics revealed that DHP altered fecal metabolites and significantly increased levels of gut-derived metabolites, spermidine, and indole, which have been reported to inhibit liver injury and improve lipid metabolism and the intestinal barrier. Correlation analysis showed that spermidine and indole levels were significantly negatively correlated with liver injury-related parameters and positively correlated with the intestinal species B. animalis enriched by DHP. Overall, this study confirmed that DHP prevented liver injury by regulating intestinal microbiota dysbiosis and fecal metabolites.
Collapse
Affiliation(s)
- Meng-Hua Ma
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an City, 237012, China
| | - Lei-Lei Gao
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Chuang-Bo Chen
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Fang-Li Gu
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
| | - Si-Qi Wu
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Fang Li
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
| | - Bang-Xing Han
- Traditional Chinese Medicine Institute of Anhui Dabie Mountain, West Anhui University, Lu'an City, 237012, China
- College of Biology and Pharmaceutical Engineering, West Anhui University, Lu'an City, 237012, China
- Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, Lu'an City, 237012, China
| |
Collapse
|
7
|
Korczak M, Pilecki M, Granica S, Gorczynska A, Pawłowska KA, Piwowarski JP. Phytotherapy of mood disorders in the light of microbiota-gut-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 111:154642. [PMID: 36641978 DOI: 10.1016/j.phymed.2023.154642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 11/22/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Clinical research in natural product-based psychopharmacology has revealed a variety of promising herbal medicines that may provide benefit in the treatment of mild mood disorders, however failed to unambiguously indicate pharmacologically active constituents. The emerging role of the microbiota-gut-brain axis opens new possibilities in the search for effective methods of treatment and prevention of mood disorders. PURPOSE Considering the clinically proven effectiveness juxtaposed with inconsistencies regarding the indication of active principles for many medicinal plants applied in the treatment of anxiety and depression, the aim of the review is to look at their therapeutic properties from the perspective of the microbiota-gut-brain axis. METHOD A literature-based survey was performed using Scopus, Pubmed, and Google Scholar databases. The current state of knowledge regarding Hypericum perforatum, Valeriana officinalis, Piper methysticum, Passiflora incarnata, Humulus lupulus, Melissa officinalis, Lavandula officinalis, and Rhodiola rosea in terms of their antimicrobial activity, bioavailability, clinical effectiveness in depression/anxiety and gut microbiota - natural products interaction was summarized and analyzed. RESULTS Recent studies have provided direct and indirect evidence that herbal extracts and isolated compounds are potent modulators of gut microbiota structure. Additionally, some of the formed postbiotic metabolites exert positive effects and ameliorate depression-related behaviors in animal models of mood disorders. The review underlines the gap in research on natural products - gut microbiota interaction in the context of mood disorders. CONCLUSION Modification of microbiota-gut-brain axis by natural products is a plausible explanation of their therapeutic properties. Future studies evaluating the effectiveness of herbal medicine and isolated compounds in treating mild mood disorders should consider the bidirectional interplay between phytoconstituents and the gut microbiota community.
Collapse
Affiliation(s)
- Maciej Korczak
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pilecki
- Department of Psychiatry, Collegium Medicum, Jagiellonian University, Cracow, Poland
| | - Sebastian Granica
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Aleksandra Gorczynska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Karolina A Pawłowska
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
| | - Jakub P Piwowarski
- Microbiota Lab, Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland.
| |
Collapse
|
8
|
Cerdá-Bernad D, Costa L, Serra AT, Bronze MR, Valero-Cases E, Pérez-Llamas F, Candela ME, Arnao MB, Barberán FT, Villalba RG, García-Conesa MT, Frutos MJ. Saffron against Neuro-Cognitive Disorders: An Overview of Its Main Bioactive Compounds, Their Metabolic Fate and Potential Mechanisms of Neurological Protection. Nutrients 2022; 14:5368. [PMID: 36558528 PMCID: PMC9781906 DOI: 10.3390/nu14245368] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Saffron (Crocus sativus L.) is a spice used worldwide as a colouring and flavouring agent. Saffron is also a source of multiple bioactive constituents with potential health benefits. Notably, saffron displays consistent beneficial effects against a range of human neurological disorders (depression, anxiety, sleeping alterations). However, the specific compounds and biological mechanisms by which this protection may be achieved have not yet been elucidated. In this review, we have gathered the most updated evidence of the neurological benefits of saffron, as well as the current knowledge on the main saffron constituents, their bioavailability and the potential biological routes and postulated mechanisms by which the beneficial protective effect may occur. Our aim was to provide an overview of the neuroprotective effects attributed to this product and its main bioactive compounds and to highlight the main research gaps that need to be further pursued to achieve full evidence and understanding of the benefits of saffron. Overall, improved clinical trials and adequately designed pre-clinical studies are needed to support the evidence of saffron and of its main bioactive components (e.g., crocin, crocetin) as a therapeutic product to combat neurological disorders.
Collapse
Affiliation(s)
- Débora Cerdá-Bernad
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| | - Leonor Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
| | - Ana Teresa Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Maria Rosário Bronze
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
- iMED, Faculdade de Farmácia da Universidade de Lisboa, Av. das Forças Armadas, 1649-019 Lisboa, Portugal
| | - Estefanía Valero-Cases
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| | | | - María Emilia Candela
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Marino B. Arnao
- Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | - Francisco Tomás Barberán
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - Rocío García Villalba
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - María-Teresa García-Conesa
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Campus de Espinardo, 30100 Murcia, Spain
| | - María-José Frutos
- Research Group on Quality and Safety, Agro-Food Technology Department, CIAGRO-UMH, Centro de Investigación e Innovación Agroalimentaria y Agroambiental, Miguel Hernández University, 03312 Orihuela, Spain
| |
Collapse
|
9
|
Dacrema M, Ali A, Ullah H, Khan A, Di Minno A, Xiao J, Martins AMC, Daglia M. Spice-Derived Bioactive Compounds Confer Colorectal Cancer Prevention via Modulation of Gut Microbiota. Cancers (Basel) 2022; 14:cancers14225682. [PMID: 36428774 PMCID: PMC9688386 DOI: 10.3390/cancers14225682] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Colorectal cancer (CRC) is the second most frequent cause of cancer-related mortality among all types of malignancies. Sedentary lifestyles, obesity, smoking, red and processed meat, low-fiber diets, inflammatory bowel disease, and gut dysbiosis are the most important risk factors associated with CRC pathogenesis. Alterations in gut microbiota are positively correlated with colorectal carcinogenesis, as these can dysregulate the immune response, alter the gut's metabolic profile, modify the molecular processes in colonocytes, and initiate mutagenesis. Changes in the daily diet, and the addition of plant-based nutraceuticals, have the ability to modulate the composition and functionality of the gut microbiota, maintaining gut homeostasis and regulating host immune and inflammatory responses. Spices are one of the fundamental components of the human diet that are used for their bioactive properties (i.e., antimicrobial, antioxidant, and anti-inflammatory effects) and these exert beneficial effects on health, improving digestion and showing anti-inflammatory, immunomodulatory, and glucose- and cholesterol-lowering activities, as well as possessing properties that affect cognition and mood. The anti-inflammatory and immunomodulatory properties of spices could be useful in the prevention of various types of cancers that affect the digestive system. This review is designed to summarize the reciprocal interactions between dietary spices and the gut microbiota, and highlight the impact of dietary spices and their bioactive compounds on colorectal carcinogenesis by targeting the gut microbiota.
Collapse
Affiliation(s)
- Marco Dacrema
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Arif Ali
- Postgraduate Program in Pharmacology, Federal University of Ceará, Fortaleza 60430372, Brazil
| | - Hammad Ullah
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
| | - Ayesha Khan
- Department of Medicine, Combined Military Hospital Nowshera, Nowshera 24110, Pakistan
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Jianbo Xiao
- Department of Analytical and Food Chemistry, Faculty of Sciences, Universidade de Vigo, 32004 Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza 60430372, Brazil
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Correspondence:
| |
Collapse
|
10
|
Dietary organic acids ameliorate high stocking density stress-induced intestinal inflammation through the restoration of intestinal microbiota in broilers. J Anim Sci Biotechnol 2022; 13:124. [PMID: 36372893 PMCID: PMC9661804 DOI: 10.1186/s40104-022-00776-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
Background High stocking density (HSD) stress has detrimental effects on growth performance, intestinal barrier function, and intestinal microbiota in intensive animal production. Organic acids (OA) are widely used as feed additives for their ability to improve growth performance and intestinal health in poultry. However, whether dietary OA can ameliorate HSD stress-induced impaired intestinal barrier in broilers remains elusive. In this study, a total of 528 one-day-old male Arbor Acres broilers were randomly allocated into 3 treatments with 12 replicates per treatment including 10 birds for normal stocking density and 17 birds for HSD. The dietary treatments were as follows: 1) Normal stocking density + basal diet; 2) HSD + basal diets; 3) HSD + OA. Results HSD stress can induce increased levels of serum corticosterone, lipopolysaccharides, interleukin-1β, tumor necrosis factor-α, and down-regulated mRNA expression of ZO-1, resulting in compromised growth performance of broilers (P < 0.05). Dietary OA could significantly reduce levels of serum corticosterone, lipopolysaccharides, interleukin-1β, and tumor necrosis factor-α, which were accompanied by up-regulated interleukin-10, mRNA expression of ZO-1, and growth performance (P < 0.05). Moreover, OA could down-regulate the mRNA expression of TLR4 and MyD88 to inhibit the NF-κB signaling pathway (P < 0.05). Additionally, HSD stress significantly decreased the abundance of Bacteroidetes and disturbed the balance of microbial ecosystems, whereas OA significantly increased the abundance of Bacteroidetes and restored the disordered gut microbiota by reducing competitive and exploitative interactions in microbial communities (P < 0.05). Meanwhile, OA significantly increased the content of acetic and butyric acids, which showed significant correlations with intestinal inflammation indicators (P < 0.05). Conclusions Dietary OA ameliorated intestinal inflammation and growth performance of broilers through restoring the disordered gut microbial compositions and interactions induced by HSD and elevating short-chain fatty acid production to inhibit the TLR4/NF-κB signaling pathway. These findings demonstrated the critical role of intestinal microbiota in mediating the HSD-induced inflammatory responses, contributing to exploring nutritional strategies to alleviate HSD-induced stress in animals. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00776-2.
Collapse
|
11
|
Boozari M, Hosseinzadeh H. Crocin molecular signaling pathways at a glance: A comprehensive review. Phytother Res 2022; 36:3859-3884. [PMID: 35989419 DOI: 10.1002/ptr.7583] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Crocin is a hydrophilic carotenoid that is synthesized in the flowers of the Crocus genus. Numerous in vitro and in vivo research projects have been published about the biological and pharmacological properties and toxicity of crocin. Crocin acts as a memory enhancer, anxiolytic, aphrodisiac, antidepressant, neuroprotective, and so on. Here, we introduce an updated and comprehensive review of crocin molecular mechanisms based on previously examined and mentioned in the literature. Different studies confirmed the significant effect of crocin to control pathological conditions, including oxidative stress, inflammation, metabolic disorders, neurodegenerative disorders, and cancer. The neuroprotective effect of crocin could be related to the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/mammalian target of rapamycin (mTOR), Notch, and cyclic-AMP response element-binding protein signaling pathways. The crocin also protects the cardiovascular system through the inhibitory effect on toll-like receptors. The regulatory effect of crocin on PI3K/AKT/mTOR, AMP-activated protein kinase, mitogen-activated protein kinases (MAPK), and peroxisome proliferator-activated receptor pathways can play an effective role in the treatment of metabolic disorders. The crocin has anticancer activity through the PI3K/AKT/mTOR, MAPK, vascular endothelial growth factor, Wnt/β-catenin, and Janus kinases-signal transducer and activator of transcription suppression. Also, the nuclear factor-erythroid factor 2-related factor 2 and p53 signaling pathway activation may be effective in the anticancer effect of crocin. Finally, among signaling pathways regulated by crocin, the most important ones seem to be those related to the regulatory effect on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Xie X, Zhang M, Sun L, Wang T, Zhu Z, Shu R, Wu F, Li Z. Crocin-I Protects Against High-Fat Diet-Induced Obesity via Modulation of Gut Microbiota and Intestinal Inflammation in Mice. Front Pharmacol 2022; 13:894089. [PMID: 36034852 PMCID: PMC9403484 DOI: 10.3389/fphar.2022.894089] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/05/2022] Open
Abstract
Crocin-I can regulate physiological changes in the human body by altering inflammation and microbial composition. Gut microbiota are also involved in modulating the pathophysiology of obesity. However, crocin-I’s effect on obesity and the mechanism underlying its effects on gut microbiota and inflammation remain poorly understood. Here, high-fat diet (HFD) -induced obese mice were administrated crocin-I (20 mg/kg/day) for 10 weeks using an oral gavage (HFD-C20 group). HFD-C20, HFD, and Normal chow (NC) groups were compared. The fat content, colon tissue inflammatory cytokine levels, gut microbiota, and short-chain fatty acids (SCFAs) levels were measured. We show that crocin-I reduced body weight and liver weight and improved glucose resistance in HFD-induced mice, and reduced the lipid accumulation in the liver. Strikingly, crocin-I alleviated intestinal microbial disorders and decreased the F/B ratio and the abundance of Proteobacteria in HFD-induced obese mice. Crocin-I also rescued the decrease in the levels of SCFAs and repaired altered intestinal barrier functioning and intestinal inflammation in HFD-induced obese mice. These findings indicate that crocin-I may inhibit obesity by modulating the composition of gut microbiota and intestinal inflammation.
Collapse
Affiliation(s)
- Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Mengya Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Lei Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ting Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhengyan Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Ruonan Shu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Fengchun Wu, ; Zezhi Li,
| | - Zezhi Li
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
- *Correspondence: Fengchun Wu, ; Zezhi Li,
| |
Collapse
|
13
|
Chongtham A, Yoo JH, Chin TM, Akingbesote ND, Huda A, Marsh JL, Khoshnan A. Gut Bacteria Regulate the Pathogenesis of Huntington's Disease in Drosophila Model. Front Neurosci 2022; 16:902205. [PMID: 35757549 PMCID: PMC9215115 DOI: 10.3389/fnins.2022.902205] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Changes in the composition of gut microbiota are implicated in the pathogenesis of several neurodegenerative disorders. Here, we investigated whether gut bacteria affect the progression of Huntington’s disease (HD) in transgenic Drosophila melanogaster (fruit fly) models expressing full-length or N-terminal fragments of human mutant huntingtin (HTT) protein. We find that elimination of commensal gut bacteria by antibiotics reduces the aggregation of amyloidogenic N-terminal fragments of HTT and delays the development of motor defects. Conversely, colonization of HD flies with Escherichia coli (E. coli), a known pathobiont of human gut with links to neurodegeneration and other morbidities, accelerates HTT aggregation, aggravates immobility, and shortens lifespan. Similar to antibiotics, treatment of HD flies with small compounds such as luteolin, a flavone, or crocin a beta-carotenoid, ameliorates disease phenotypes, and promotes survival. Crocin prevents colonization of E. coli in the gut and alters the levels of commensal bacteria, which may be linked to its protective effects. The opposing effects of E. coli and crocin on HTT aggregation, motor defects, and survival in transgenic Drosophila models support the involvement of gut-brain networks in the pathogenesis of HD.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Jung Hyun Yoo
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Theodore M Chin
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Ngozi D Akingbesote
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - Ainul Huda
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| | - J Lawrence Marsh
- Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Ali Khoshnan
- Biology and Bioengineering, California Institute of Technology (Caltech), Pasadena, CA, United States
| |
Collapse
|
14
|
Chen CY, Rao SS, Yue T, Tan YJ, Yin H, Chen LJ, Luo MJ, Wang Z, Wang YY, Hong CG, Qian YX, He ZH, Liu JH, Yang F, Huang FY, Tang SY, Xie H. Glucocorticoid-induced loss of beneficial gut bacterial extracellular vesicles is associated with the pathogenesis of osteonecrosis. SCIENCE ADVANCES 2022; 8:eabg8335. [PMID: 35417243 PMCID: PMC9007505 DOI: 10.1126/sciadv.abg8335] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Osteonecrosis of the femoral head (ONFH) commonly occurs after glucocorticoid (GC) therapy. The gut microbiota (GM) participates in regulating host health, and its composition can be altered by GC. Here, this study demonstrates that cohousing with healthy mice or colonization with GM from normal mice attenuates GC-induced ONFH. 16S rRNA gene sequencing shows that cohousing with healthy mice rescues the GC-induced reduction of gut Lactobacillus animalis. Oral supplementation of L. animalis mitigates GC-induced ONFH by increasing angiogenesis, augmenting osteogenesis, and reducing cell apoptosis. Extracellular vesicles from L. animalis (L. animalis-EVs) contain abundant functional proteins and can enter the femoral head to exert proangiogenic, pro-osteogenic, and antiapoptotic effects, while its abundance is reduced after exposure to GC. Our study suggests that the GM is involved in protecting the femoral head by transferring bacterial EVs, and that loss of L. animalis and its EVs is associated with the development of GC-induced ONFH.
Collapse
Affiliation(s)
- Chun-Yuan Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan-Shan Rao
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Nursing, Central South University, Changsha, Hunan 410013, China
| | - Tao Yue
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yi-Juan Tan
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hao Yin
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling-Jiao Chen
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510220, China
| | - Ming-Jie Luo
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Nursing, Central South University, Changsha, Hunan 410013, China
| | - Zun Wang
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Nursing, Central South University, Changsha, Hunan 410013, China
| | - Yi-Yi Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yu-Xuan Qian
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ze-Hui He
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiang-Hua Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Fei Yang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Fei-Yu Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Si-Yuan Tang
- Xiangya School of Nursing, Central South University, Changsha, Hunan 410013, China
| | - Hui Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China
- Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
15
|
Herselman MF, Bailey S, Bobrovskaya L. The Effects of Stress and Diet on the "Brain-Gut" and "Gut-Brain" Pathways in Animal Models of Stress and Depression. Int J Mol Sci 2022; 23:ijms23042013. [PMID: 35216133 PMCID: PMC8875876 DOI: 10.3390/ijms23042013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/07/2023] Open
Abstract
Compelling evidence is building for the involvement of the complex, bidirectional communication axis between the gastrointestinal tract and the brain in neuropsychiatric disorders such as depression. With depression projected to be the number one health concern by 2030 and its pathophysiology yet to be fully elucidated, a comprehensive understanding of the interactions between environmental factors, such as stress and diet, with the neurobiology of depression is needed. In this review, the latest research on the effects of stress on the bidirectional connections between the brain and the gut across the most widely used animal models of stress and depression is summarised, followed by comparisons of the diversity and composition of the gut microbiota across animal models of stress and depression with possible implications for the gut–brain axis and the impact of dietary changes on these. The composition of the gut microbiota was consistently altered across the animal models investigated, although differences between each of the studies and models existed. Chronic stressors appeared to have negative effects on both brain and gut health, while supplementation with prebiotics and/or probiotics show promise in alleviating depression pathophysiology.
Collapse
|
16
|
Crocetin exerts hypocholesterolemic effect by inducing LDLR and inhibiting PCSK9 and Sortilin in HepG2 cells. Nutr Res 2022; 98:41-49. [DOI: 10.1016/j.nutres.2021.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/23/2022]
|
17
|
Abstract
Prednisone (PRED) is a synthetic glucocorticoid (GC) widely used in immune-mediated diseases for its immunosuppressive and anti-inflammatory properties. The effects of GC are achieved by genomic and nongenomic mechanisms. However, the nongenomic effects are largely unknown. Thus, we aimed to investigate how long-term prednisone therapy changes the composition of the gut microbiota and fecal metabolites in rats. Male Sprague-Dawley rats were randomly assigned to a control (CON) group and a PRED group, which received prednisone treatment daily for 6 weeks by gavage. The V3 to V4 regions of bacterial 16S rRNA genes were amplified and sequenced after the total bacterial DNA was extracted from fecal samples. The alpha and beta diversities were calculated. The compositional alteration of the gut microbiota at different taxonomic levels was analyzed using the Metastats method. Meanwhile, the fecal metabolites were quantitated in an ultra-performance liquid chromatography system. Similar microbial richness and diversity between the CON and PRED groups were indicated by the alpha diversity results. The gut microbial communities differed significantly between two groups. The relative abundances of the genera Eisenbergiella, Alistipes, and Clostridium XIVb decreased, whereas that of Anaerobacterium increased significantly in rats after the 6-week prednisone treatment. In total, 11 downregulated and 10 upregulated fecal metabolites were identified. Differential fecal metabolites were enriched in the pathways, including phenylalanine metabolism, butanoate metabolism, and propanoate metabolism. The lowered production of short-chain fatty acids was associated with the decreased relative abundance of the genera Alistipes and Clostridium XIVb and increased abundance of the genus Anaerobacterium. The composition of the gut microbiota and fecal metabolites was changed after long-term prednisone treatment. This may help us to understand the pharmacology of prednisone. IMPORTANCE Prednisone is widely used in chronic glomerular diseases, immunological disorders, and rheumatic diseases for its anti-inflammatory and immunosuppressive properties. It is a synthetic glucocorticoid (GC) that shows therapeutic effects after conversion to prednisolone by the liver. Prolonged GC therapy causes anti-inflammatory effects; it also results in a variety of adverse events, including obesity, hypertension, psychiatric symptoms, and dyslipidemia. The therapeutic effects and adverse events of GCs may be associated with changes in the gut microbiota, as the host might be affected by the metabolites generated by the altered gut microbes. Thus, we investigated how long-term prednisone therapy changed the composition of the gut microbiota and fecal metabolites in rats. This study may shed new light on the pharmacology of prednisone.
Collapse
|
18
|
Kong Y, Li Y, Dai Z, Qin M, Fan H, Hao J, Zhang C, Zhong Q, Qi C, Wang P. Glycosaminoglycan from Ostrea rivularis attenuates hyperlipidemia and regulates gut microbiota in high-cholesterol diet-fed zebrafish. Food Sci Nutr 2021; 9:5198-5210. [PMID: 34532028 PMCID: PMC8441474 DOI: 10.1002/fsn3.2492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/01/2021] [Accepted: 07/11/2021] [Indexed: 12/22/2022] Open
Abstract
Hyperlipidemia an immense group of acquired or genetic metabolic disorders that is characterized by an excess of lipids in the bloodstream. Altogether, they have a high prevalence worldwide and constitute a major threat to human health. Glycosaminoglycans (GAG) are natural biomolecules that have hypolipidemic activity. The purpose of this study was to investigate the potential hypolipidemic effect of glycosaminoglycans extracted from Ostrea rivularis (OGAG) on hyperlipidemic zebrafish, as well as the possible underlying mechanism of such effect. Dietary supplementation with OGAG during 4 weeks significantly reduced the serum and hepatic lipid levels and the hepatosomatic index in hyperlipidemic zebrafish. In addition, histopathological showed that OGAG supplementation decreases the volume and number of lipid droplets in hepatocytes. Transcriptome and real-time quantitative polymerase chain reaction analysis revealed that the gene expression levels of PPARγ, SCD, HMGRA, ACAT2, HMGCS, and HMGCR were significantly downregulated by OGAG treatment in hepatocytes, whereas those of CD36, FABP2, FABP6, ABCG5, and CYP7A1 were significantly upregulated. This suggests that the hypolipidemic effect of OGAG relies on increasing the ketogenic metabolism of fatty acids, inhibiting cholesterol synthesis, and enhancing the transformation of cholesterol to bile acid. Furthermore, OGAG treatment improved gut microbiota imbalance by reducing the Firmicutes-to-Bacteroidetes ratio, increasing the relative abundance of beneficial bacteria (Bacteroidetes, Verrucomicrobia, Acidobacteria, and Sphingomonas), and reducing the relative abundance of harmful bacteria (Proteobacteria, Cohaesibacter, Vibrio, and Terrisporobacter). These findings highlight the potential benefit of implementing OGAG as a dietary supplement to prevent and treat hyperlipidemia.
Collapse
Affiliation(s)
- Yan Kong
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity ConservationBeibu Gulf UniversityQinzhouChina
- College of Light Industry and Food EngineeringGuangxi UniversityNanningChina
| | - Ying Li
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Zi‐Ru Dai
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity ConservationBeibu Gulf UniversityQinzhouChina
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Mei Qin
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - He‐Liang Fan
- College of Light Industry and Food EngineeringGuangxi UniversityNanningChina
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Jun‐Guang Hao
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Chen‐Xiao Zhang
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Qiu‐Ping Zhong
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity ConservationBeibu Gulf UniversityQinzhouChina
| | - Cen Qi
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| | - Pei Wang
- Qinzhou Key Laboratory of Food Flavor Analysis and ControlBeibu Gulf UniversityQinzhouChina
| |
Collapse
|
19
|
Guan S, Pu Q, Liu Y, Wu H, Yu W, Pi Z, Liu S, Song F, Li J, Guo DA. Scale-Up Preparation of Crocins I and II from Gardeniajasminoides by a Two-Step Chromatographic Approach and Their Inhibitory Activity Against ATP Citrate Lyase. Molecules 2021; 26:molecules26113137. [PMID: 34073936 PMCID: PMC8197369 DOI: 10.3390/molecules26113137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
Crocins are highly valuable natural compounds for treating human disorders, and they are also high-end spices and colorants in the food industry. Due to the limitation of obtaining this type of highly polar compound, the commercial prices of crocins I and II are expensive. In this study, macroporous resin column chromatography combined with high-speed counter-current chromatography (HSCCC) was used to purify crocins I and II from natural sources. With only two chromatographic steps, both compounds were simultaneously isolated from the dry fruit of Gardenia jasminoides, which is a cheap herbal medicine distributed in a number of countries. In an effort to shorten the isolation time and reduce solvent usage, forward and reverse rotations were successively utilized in the HSCCC isolation procedure. Crocins I and II were simultaneously obtained from a herbal resource with high recoveries of 0.5% and 0.1%, respectively, and high purities of 98.7% and 99.1%, respectively, by HPLC analysis. The optimized preparation method was proven to be highly efficient, convenient, and cost-effective. Crocins I and II exhibited inhibitory activity against ATP citrate lyase, and their IC50 values were determined to be 36.3 ± 6.24 and 29.7 ± 7.41 μM, respectively.
Collapse
Affiliation(s)
- Shuguang Guan
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (Q.P.); (W.Y.)
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (S.L.); (F.S.)
| | - Qiaoli Pu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (Q.P.); (W.Y.)
| | - Yinan Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.L.); (J.L.)
| | - Honghong Wu
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Wenbo Yu
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (Q.P.); (W.Y.)
| | - Zifeng Pi
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (S.L.); (F.S.)
- Changchun Sunnytech Co., Ltd., Changchun 130061, China
- Correspondence: (Z.P.); (D.-A.G.); Tel.: +86-21-50271516 (D.-A.G.); Fax: +86-21-50271516 (D.-A.G.)
| | - Shu Liu
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (S.L.); (F.S.)
| | - Fengrui Song
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; (S.L.); (F.S.)
| | - Jingya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.L.); (J.L.)
| | - De-An Guo
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (S.G.); (Q.P.); (W.Y.)
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; (Y.L.); (J.L.)
- Correspondence: (Z.P.); (D.-A.G.); Tel.: +86-21-50271516 (D.-A.G.); Fax: +86-21-50271516 (D.-A.G.)
| |
Collapse
|
20
|
Kim HI, Hong SH, Lee SY, Ku JM, Kim MJ, Ko SG. Gardenia Jasminoides Ameliorates Antibiotic-Associated Aggravation of DNCB-Induced Atopic Dermatitis by Restoring the Intestinal Microbiome Profile. Nutrients 2021; 13:nu13041349. [PMID: 33919521 PMCID: PMC8072552 DOI: 10.3390/nu13041349] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/31/2022] Open
Abstract
The intestinal microbiome is considered one of the key regulators of health. Accordingly, the severity of atopic dermatitis (AD) is mediated by the skin and intestinal microbiome environment. In this study, while evaluating the aggravation in AD symptoms by the antibiotics cocktail (ABX)-induced depletion of the intestinal microbiome, we sought to verify the effect of Gardenia jasminoides (GJ), a medicinal herb used for inflammatory diseases, on AD regarding its role on the intestinal microbiome. To verify the aggravation in AD symptoms induced by the depletion of the intestinal microbiome, we established a novel mouse model by administrating an ABX to create a microbiome-free environment in the intestine, and then applied 2,4-dinitrochlorobenzene (DNCB) to induce an AD-like skin inflammatory response. While ABX treatment aggravated AD-like symptoms, the 2-week administration of GJ improved these pathological changes. DNCB application upregulated immune cell count and serum cytokine expression, which were alleviated by GJ. Moreover, pathological alterations by antibiotics and DNCB, including histological damage of the intestine and the intestinal expression of IL-17, were recovered in GJ-treated mice. The beneficial effect of GJ was due to the restoration of the intestinal microbiome composition. Overall, we suggest GJ as a potential therapeutic agent for AD due to its regulation of the intestinal microbiome.
Collapse
Affiliation(s)
- Hyo In Kim
- Department of Surgery, Beth Israel Deaconess Medical Center/Harvard Medical School, 330 Brookline Ave, Boston, MA 02215, USA;
| | - Se Hyang Hong
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, Korea;
| | - Seo Yeon Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.Y.L.); (M.J.K.)
| | - Jin Mo Ku
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | - Min Jeong Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.Y.L.); (M.J.K.)
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-0329; Fax: +82-2-966-1165
| |
Collapse
|
21
|
Teng S, Hao J, Bi H, Li C, Zhang Y, Zhang Y, Han W, Wang D. The Protection of Crocin Against Ulcerative Colitis and Colorectal Cancer via Suppression of NF-κB-Mediated Inflammation. Front Pharmacol 2021; 12:639458. [PMID: 33841156 PMCID: PMC8025585 DOI: 10.3389/fphar.2021.639458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background: In China, the incidence of ulcerative colitis (UC) is increasing every year, but the etiology of UC remains unclear. UC is known to increase the risk of colorectal cancer (CRC). The aim of this study was to investigate the protective effects of crocin against UC and CRC in mouse models. Methods: Crocin was used to treat the dextran sodium sulfate (DSS)-induced UC mice for 3 weeks, and ApcMinC/Gpt mice with colorectal cancer for 8 weeks. Proteomics screening was used to detect changes in the protein profiles of colon tissues of UC mice. Enzyme-linked immunosorbent assays and western blot were used to verify these changes. Results: Crocin strongly reduced the disease activity index scores of UC mice, and improved the pathological symptoms of the colonic epithelium. The anti-inflammatory effects of crocin were indicated by its regulation of the activity of various cytokines, such as interleukins, via the modulation of nuclear factor kappa-B (NF-κB) signaling. Crocin significantly suppressed tumor growth in ApcMinC/Gpt mice and ameliorated pathological alterations in the colon and liver, but had no effects on spleen and kidney. Additionally, crocin significantly decreased the concentrations of interleukins and tumor necrosis factor-α in the sera and colon tissues, suggesting its anti-inflammatory effects related to NF-κB signaling. Finally, 12-h incubation of SW480 cells with crocin caused cell cycle arrest, enhanced the apoptotic rate, promoted the dissipation of mitochondrial membrane potential, and the over-accumulation of reactive oxygen species. From the theoretical analyses, phosphorylated residues on S536 may enhance the protein-protein interactions which may influence the conformational changes in the secondary structure of NF-κB. Conclusion: The protective effects of crocin on UC and CRC were due to its suppression of NF-κB-mediated inflammation.
Collapse
Affiliation(s)
- Shanshan Teng
- School of Life Sciences, Jilin University, Changchun, China
| | - Jie Hao
- School of Life Sciences, Jilin University, Changchun, China
| | - Hui Bi
- Department of Anesthesiology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Congcong Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Yaqin Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Weiwei Han
- School of Life Sciences, Jilin University, Changchun, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
22
|
Angoa-Pérez M, Zagorac B, Francescutti DM, Theis KR, Kuhn DM. Responses to chronic corticosterone on brain glucocorticoid receptors, adrenal gland, and gut microbiota in mice lacking neuronal serotonin. Brain Res 2020; 1751:147190. [PMID: 33152342 DOI: 10.1016/j.brainres.2020.147190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Dysregulation of the stress-induced activation of the hypothalamic-pituitary-adrenocortical axis can result in disease. Bidirectional communication exists between the brain and the gut, and alterations in these interactions appear to be involved in stress regulation and in the pathogenesis of neuropsychiatric diseases, such as depression. Serotonin (5HT) plays a crucial role in the functions of these two major organs but its direct influence under stress conditions remains unclear. To investigate the role of neuronal 5HT on chronic stress responses and its influence on the gut microbiome, mice lacking the gene for tryptophan hydroxylase-2 were treated with the stress hormone corticosterone (CORT) for 21 days. The intake of fluid and food, as well as body weights were recorded daily. CORT levels, expression of glucocorticoid receptors (GR) in the brain and the size of the adrenal gland were evaluated. Caecum was used for 16S rRNA gene characterization of the gut microbiota. Results show that 5HT depletion produced an increase in food intake and a paradoxical reduction in body weight that were enhanced by CORT. Neuronal 5HT depletion impaired the feedback regulation of CORT levels but had no putative effect on the CORT-induced decrease in hippocampal GR expression and the reduction of the adrenal cortex size. Finally, the composition and structure of the gut microbiota were significantly impacted by the absence of neuronal 5HT, and these alterations were enhanced by chronic CORT treatment. Therefore, we conclude that neuronal 5HT influences the stress-related responses at different levels involving CORT levels regulation and the gut microbiome.
Collapse
Affiliation(s)
- Mariana Angoa-Pérez
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States.
| | - Branislava Zagorac
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Dina M Francescutti
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| | - Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, United States
| | - Donald M Kuhn
- Research and Development Service, John D. Dingell VA Medical Center, Detroit, MI, United States; Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
23
|
Xiao Q, Shu R, Wu C, Tong Y, Xiong Z, Zhou J, Yu C, Xie X, Fu Z. Crocin-I alleviates the depression-like behaviors probably via modulating "microbiota-gut-brain" axis in mice exposed to chronic restraint stress. J Affect Disord 2020; 276:476-486. [PMID: 32871679 DOI: 10.1016/j.jad.2020.07.041] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/20/2020] [Accepted: 07/05/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Depressive disorder is rapidly advancing in the worldwide, and therapeutic strategy through "gut-brain" axis has been proved to be effective. Crocin, has been found to have antidepressant activity. However, there is no thorough research for the effects of crocin-I (a major active component of crocin) on depression and its underlying mechanism. METHODS We investigated the antidepressant effect of six-week oral administration of crocin-I in a mice model of depression induced by four-week CRS. Based on the "microbiota-gut-brain" axis, we determined the effects of crocin-I administration on gut microbiota, intestinal barrier function, short chain fatty acids and neurochemical indicators. RESULTS Administration of crocin-I at a dose of 40 mg/kg for six weeks mitigated depression-like behaviors of depressed mice as evidenced by behaviors tests. In addition, crocin-I reduced the levels of lipopolysaccharide (LPS), Interleukin-6and tumor necrosis factor-α (TNF-α) in serum and TNF-α expression in the hippocampus, and increased the hippocampal brain-derived neurotrophic factor. Besides, 16 s rRNA sequencing revealed that crocin-I mitigated the gut microbiota dysbiosis in depressed mice as represented by the decreased abundance of Proteobacteria and Bacteroidetes, Sutterella spp. and Ruminococcus spp. and increased abundances of Firmicutes, Lactobacillus spp. and Bacteroides spp. Moreover, gas chromatography-mass spectrometry revealed that crocin-I reversed the decreased levels of short-chain fatty acids (SCFAs) in feces of depressed mice. Furthermore, crocin-I improved the impaired intestinal barrier by increasing expression of Occludin and Claudin-1, which contributed to the decreased LPS leakage. LIMITATIONS Only the male mice were used; the dose-effect relationship should be observed. CONCLUSION These results suggested that crocin-I effectively alleviated depression-like behavior, likely depended on the gut microbiota and its modulation of intestinal barrier and SCFAs.
Collapse
Affiliation(s)
- Qingfeng Xiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 6 District, Zhaohui, Hangzhou 310032, China
| | - Ruonan Shu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 6 District, Zhaohui, Hangzhou 310032, China
| | - Chenlu Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 6 District, Zhaohui, Hangzhou 310032, China
| | - Yingpeng Tong
- School of Advanced Study, Taizhou University, Taizhou 318000, China
| | - Ze Xiong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 6 District, Zhaohui, Hangzhou 310032, China
| | - Jiafeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 6 District, Zhaohui, Hangzhou 310032, China
| | - Chunan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 6 District, Zhaohui, Hangzhou 310032, China
| | - Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 6 District, Zhaohui, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 6 District, Zhaohui, Hangzhou 310032, China.
| |
Collapse
|
24
|
Ashrafizadeh M, Zarrabi A, Najafi M, Samarghandian S, Mohammadinejad R, Ahn KS. Resveratrol targeting tau proteins, amyloid-beta aggregations, and their adverse effects: An updated review. Phytother Res 2020; 34:2867-2888. [PMID: 32491273 DOI: 10.1002/ptr.6732] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Resveratrol (Res) is a non-flavonoid compound with pharmacological actions such as antioxidant, antiinflammatory, hepatoprotective, antidiabetes, and antitumor. This plant-derived chemical has a long history usage in treatment of diseases. The excellent therapeutic impacts of Res and its capability in penetration into blood-brain barrier have made it an appropriate candidate in the treatment of neurological disorders (NDs). Tau protein aggregations and amyloid-beta (Aβ) deposits are responsible for the induction of NDs. A variety of studies have elucidated the role of these aggregations in NDs and the underlying molecular pathways in their development. In the present review, based on the recently published articles, we describe that how Res administration could inhibit amyloidogenic pathway and stimulate processes such as autophagy to degrade Aβ aggregations. Besides, we demonstrate that Res supplementation is beneficial in dephosphorylation of tau proteins and suppressing their aggregations. Then, we discuss molecular pathways and relate them to the treatment of NDs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Xie X, Shen Q, Yu C, Xiao Q, Zhou J, Xiong Z, Li Z, Fu Z. Depression-like behaviors are accompanied by disrupted mitochondrial energy metabolism in chronic corticosterone-induced mice. J Steroid Biochem Mol Biol 2020; 200:105607. [PMID: 32045672 DOI: 10.1016/j.jsbmb.2020.105607] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/19/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022]
Abstract
Stress exerts its negative effects by interference with mitochondrial energy production in rodents, and is able to impair mitochondrial bioenergetics. However, the underlying mechanism that stress hormone impacts depression-like behaviors and mitochondrial energy metabolism is still not well understood. Here, we investigated the changes of depression-like behaviors and mitochondrial energy metabolism induced by chronic corticosterone (CORT). The results showed that after treatment with CORT for 6 weeks, mice displayed depression-like behaviors, which were identified by tail suspension test, forced swimming test and open field test. Then, the livers were isolated and tested by RNA sequencing and metabolome analysis. RNA sequencing showed 354 up-regulated genes and 284 down-regulated genes, and metabolome analysis revealed 280 metabolites with increased abundances and 193 metabolites with reduced abundances in the liver of mice after CORT, which were closely associated with lipid metabolism and oxidative phosphorylation in mitochondria. Based on these findings, the changes of mitochondrial energy metabolism were investigated, and we revealed that CORT condition inhibited glycolysis and fatty acid degradation pathway, and activated synthesis of triacylglycerol, leading to the reduced levels of acetyl-CoA and attenuated TCA cycle. Also, the pathways of NAD+ synthesis were inhibited, resulting in the reduced activity of sirtuin 3 (SIRT3). Thus, all of these observations disrupted the function of mitochondria, and led to the decrease of ATP production. Our findings uncover a novel mechanism of stress on depression-like behaviors and mitochondrial energy metabolism in rodents.
Collapse
Affiliation(s)
- Xiaoxian Xie
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qichen Shen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chunan Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Qingfeng Xiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jiafeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ze Xiong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zezhi Li
- Department of Neurology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
26
|
Effect of Dose and Timing of Burdock ( Arctium lappa) Root Intake on Intestinal Microbiota of Mice. Microorganisms 2020; 8:microorganisms8020220. [PMID: 32041173 PMCID: PMC7074855 DOI: 10.3390/microorganisms8020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/25/2020] [Accepted: 02/04/2020] [Indexed: 12/22/2022] Open
Abstract
Water-soluble dietary fiber such as inulin improves the beta diversity of the intestinal microbiota of mice fed with a high-fat diet (HFD). The circadian clock is the system that regulates the internal daily rhythm, and it affects the pattern of beta diversity in mouse intestinal microbiota. Burdock (Arctium lappa) root contains a high concentration of inulin/fructan (approximately 50%) and is a very popular vegetable in Japan. Arctium lappa also contains functional substances that may affect intestinal microbiota, such as polyphenols. We compared the effects of inulin and A. lappa powder on the diversity of the intestinal microbiota of HFD-fed mice. 16S rDNA from the intestinal microbiota obtained from feces was analyzed by 16S Metagenomic Sequencing Library Preparation. It was found to have a stronger effect on microbiota than inulin alone, suggesting that inulin has an additive and/or synergic action with other molecules in A. lappa root. We examined the effects of intake timing (breakfast or dinner) of A. lappa on intestinal microbiota. The intake of A. lappa root in the evening had a stronger effect on microbiota diversity in comparison to morning intake. Therefore, it is suggested that habitual consumption of A. lappa root in the evening may aid the maintenance of healthy intestinal microbiota.
Collapse
|