1
|
Camargo CA, Salvador-Reyes R, Bazzani CSR, Clerici MTPS, Marques MC, Mariutti LRB. Screening the carotenoid in vitro bioaccessibility of purple corn breakfast cereal consumed with milk and plant-based milk. Food Res Int 2024; 197:115259. [PMID: 39593341 DOI: 10.1016/j.foodres.2024.115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
Chronic non-communicable diseases (NCD), such as cardiovascular diseases, diabetes, and cancer, dominate global mortality, besides compromising the quality of life. Unhealthy habits like sedentary lifestyles and poor diets escalate NCD risks. Conversely, the consumption of phenolic compounds and carotenoids has shown promise in reducing NCD risks. The food industry responds by adapting products to meet demands for healthier options rich in bioactive compounds. For instance, breakfast cereals made from purple and yellow corn offer carotenoids and anthocyanins and form a nutrient-balanced meal when consumed with milk or alternatives. However, bioactive compounds in food do not guarantee absorption, necessitating bioaccessibility studies. In this study, we aimed to evaluate the bioaccessibility of the major carotenoids in two breakfast cereals, one made with 100% yellow corn and the other with 50% purple corn, co-digested with whole milk, semi-skimmed milk, skimmed milk, and almond "milk". The bioaccessibility of lutein in the breakfast cereals was evaluated using the INFOGEST 2.0 in vitro digestion method. Results showed that lutein bioaccessibility ranged from 9% to 29%. The bioaccessibility was lower than that observed in other food matrices, such as spinach and maize products. High fiber, low carotenoid contents, and anthocyanin presence negatively influenced the carotenoid bioaccessibility. Interestingly, the varying lipid content of milk showed no impact on lutein bioaccessibility under the examined conditions. In conclusion, the effects of lipids in a low range (0-7%) are not significant (p > 0.05) compared to other matrix components. When developing new products with health and nutritional benefits, it is important to consider that while fiber can reduce the bioaccessibility of carotenoids, it remains crucial for gut health.
Collapse
Affiliation(s)
- Celso Andrade Camargo
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil.
| | | | - Carmen Sílvia Rincon Bazzani
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil.
| | | | - Marcella Camargo Marques
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil.
| | - Lilian Regina Barros Mariutti
- Department of Food and Nutrition, School of Food Engineering, University of Campinas (UNICAMP), Campinas 13083-862, Brazil.
| |
Collapse
|
2
|
Karoui R, Bouaicha I. A review on nutritional quality of animal and plant-based milk alternatives: a focus on protein. Front Nutr 2024; 11:1378556. [PMID: 39036491 PMCID: PMC11259050 DOI: 10.3389/fnut.2024.1378556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/11/2024] [Indexed: 07/23/2024] Open
Abstract
In recent years, the demand of consumers for products rich in protein is of significant growth. Due to its structure in tissues, protein is considered an essential nutrient for maintenance and growth. It is well known that dairy foods differ from plant-based milk alternatives in their composition. In addition to protein content, nutrients in milk and plant-based beverages vary greatly in composition and content, such as: Calcium, fiber and fat. The nutritional quality of dairy protein sources depends on both their amino acid composition and bioavailability. Indeed, dairy products are considered to be excellent sources of proteins with high Digestible Indispensable Amino Acid Score (DIAAS) values varying from 100 to 120. However, plant proteins are considered to have generally lower essential amino acid contents and lower DIAAS values than dairy proteins. For example, pea and rice proteins are known to have medium and lower DIAAS with values of 62 and 47, respectively. The present review is dedicated to study the nutritional quality of animal and plant-based milk alternatives, where a focus on protein composition and amount are determined.
Collapse
Affiliation(s)
- Romdhane Karoui
- Univ. Artois, Univ. Lille, Univ. Littoral Côte d’Opale, Univ. Picardie Jules Verne, Univ. de Liège, INRAE, Junia, Lens, France
| | | |
Collapse
|
3
|
Suárez SE, Rabesona H, Ménard O, Jardin J, Anton M, Cristina Añón M. Dynamic digestion of a high protein beverage based on amaranth: Structural changes and antihypertensive activity. Food Res Int 2024; 187:114416. [PMID: 38763666 DOI: 10.1016/j.foodres.2024.114416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
An amaranth beverage (AB) was subjected to a simulated process of dynamic gastrointestinal digestion DIDGI®, a simple two-compartment in vitro dynamic gastrointestinal digestion system. The structural changes caused to the proteins during digestion and the digesta inhibitory capacity of the angiotensin converting enzyme (ACE) were investigated. In gastric compartment the degree of hydrolysis (DH) was 14.7 ± 1.5 % and in the intestinal compartment, proteins were digests in a greater extent (DH = 60.6 ± 8.4 %). Protein aggregation was detected during the gastric phase. The final digesta obtained both at the gastric and intestinal level, showed ACE inhibitory capacity (IC50 80 ± 10 and 140 ± 20 μg/mL, respectively). Purified fractions from these digesta showed even greater inhibitory capacity, being eluted 2 (E2) the most active fraction (IC50 60 ± 10 μg/mL). Twenty-six peptide sequences were identified. Six of them, with potential antihypertensive capacity, belong to A. hypochondriacus, 3 agglutinins and 3 encrypted sequences in the 11S globulin. Results obtained provide new and useful information on peptides released from the digestion of an amaranth based beverage and its ACE bioactivity.
Collapse
Affiliation(s)
- Santiago E Suárez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, UNLP. CIC. CONICET (Consejo Nacional de Investigaciones Científica y Técnicas), Calle 47 y 116 - 1900, La Plata, Argentina; INRAE, UR BIA, F-44316 Nantes, France; INRAE, Institut AGRO, STLO, 35042 Rennes, France
| | | | | | | | | | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), Facultad de Ciencias Exactas, UNLP. CIC. CONICET (Consejo Nacional de Investigaciones Científica y Técnicas), Calle 47 y 116 - 1900, La Plata, Argentina.
| |
Collapse
|
4
|
Qazi HJ, Ye A, Acevedo-Fani A, Singh H. Delivery of encapsulated bioactive compounds within food matrices to the digestive tract: recent trends and future perspectives. Crit Rev Food Sci Nutr 2024:1-22. [PMID: 38821104 DOI: 10.1080/10408398.2024.2353366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Encapsulation technologies have achieved encouraging results improving the stability, bioaccessibility and absorption of bioactive compounds post-consumption. There is a bulk of published research on the gastrointestinal behavior of encapsulated bioactive food materials alone using in vitro and in vivo digestion models, but an aspect often overlooked is the impact of the food structure, which is much more complex to unravel and still not well understood. This review focuses on discussing the recent findings in the application of encapsulated bioactive components in fabricated food matrices. Studies have suggested that the integration of encapsulated bioactive compounds has been proven to have an impact on the physicochemical characteristics of the finished product in addition to the protective effect of encapsulation on the fortified bioactive compound. These products containing bioactive compounds undergo further structural reorganization during digestion, impacting the release and emptying rates of fortified bioactive compounds. Thus, by manipulation of various food structures and matrices, the release and delivery of these bioactive compounds can be altered. This knowledge provides new opportunities for designing specialized foods for specific populations.
Collapse
Affiliation(s)
- Haroon Jamshaid Qazi
- Riddet Institute, Massey University, Palmerston North, New Zealand
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jillani Road, Lahore, Punjab, Pakistan
| | - Aiqian Ye
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | | | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
5
|
Zhou T, Sheng B, Gao H, Nie X, Sun H, Xing B, Wu L, Zhao D, Wu J, Li C. Effect of fat concentration on protein digestibility of Chinese sausage. Food Res Int 2024; 177:113922. [PMID: 38225153 DOI: 10.1016/j.foodres.2023.113922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Chinese sausage is a popular traditional Chinese meat product, but its high-fat content makes consumers hesitant. The purpose of this study is to compare the nutritional differences of Chinese sausages with different fermentation times (0, 10, 20, 30 d) and fat content (the initial content was 11.59% and 20.14%) during digestion. The comparison of digestion degree, protein structure, and peptide composition between different sausages were studied through in vitro simulated digestion. Chinese sausages with high-fat content had higher α-helix, β-turn, and random coil, making them easier to digest. The fermentation process made this phenomenon more pronounced. The high-fat sausage fermented for 10 d showed the highest release of primary amino acids (about 9.5%), which was about 3.5% higher than the low-fat sausage under the same conditions. The results of peptidomics confirmed the relevant conclusions. After gastric digestion, the types of peptides in the digestive fluid of high-fat sausages were generally more than those in low-fat sausages, while after intestinal digestion, the opposite results were observed. The type of peptide reached its peak after fermentation for 20 d. These findings are of obvious significance for selecting the appropriate fermentation time and fat content of Chinese sausages.
Collapse
Affiliation(s)
- Tianming Zhou
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Bulei Sheng
- Key Laboratory of Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, 230036, PR China
| | - Haotian Gao
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaonan Nie
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Haojie Sun
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Baofang Xing
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Longxia Wu
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Di Zhao
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Juqing Wu
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China.
| | - Chunbao Li
- National key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Key Laboratory of Meat Processing, Ministry of Agriculture and Rural Affairs, Jiangsu Provincial Collaborative Innovative Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
6
|
Meng C, Chen Y, Wang X, Chen H, Deng Q. Effect of Different Temperatures on the Storage Stability of Flaxseed Milk. Foods 2023; 12:3571. [PMID: 37835223 PMCID: PMC10572285 DOI: 10.3390/foods12193571] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
In this study, the physical and oxidative stability of flaxseed milk without food additives at different temperatures (25 °C and 37 °C) was assessed. Over in 206 days in storage, the particle size, Turbiscan stability index (TSI), centrifugal sedimentation rate, and primary and secondary oxidation products of flaxseed milk increased, viscosity decreased, and the absolute value of the potential first decreased and then increased. These phenomena indicated a gradual decrease in the physical stability of flaxseed milk, accompanied by drastic oxidative changes. The antioxidant capacity of flaxseed milk was related to the location of the physical distribution of flaxseed lignin, which was more effective in the aqueous phase compared to the non-aqueous phase. Interestingly, after 171 days in storage at 37 °C, the particle size of flaxseed milk was approximately doubled (6.98 μm → 15.27 μm) and the absolute value of the potential reached its lowest point (-13.49 mV), when the content of primary oxidation products reached its maximum (8.29 mmol/kg oil). The results showed that temperature had a significant effect on the stability of flaxseed milk and that stability decreased with increasing temperature and shortened shelf life. This work provides a theoretical basis for elucidating the stabilization-destabilization mechanism of flaxseed milk.
Collapse
Affiliation(s)
- Chen Meng
- School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China;
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Y.C.); (X.W.)
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Y.C.); (X.W.)
| | - Xintian Wang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Y.C.); (X.W.)
| | - Hongjian Chen
- College of Health Science and Engineering, Hubei University, Wuhan 430062, China
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (Y.C.); (X.W.)
| |
Collapse
|
7
|
Chen C, Pan Y, Niu Y, Peng D, Huang W, Shen W, Jin W, Huang Q. Modulating interfacial structure and lipid digestion of natural Camellia oil body by roasting and boiling processes. Food Chem 2023; 402:134198. [DOI: 10.1016/j.foodchem.2022.134198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/25/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
|
8
|
Jin Y, Wilde PJ, Li C, Jin W, Han J, Liu W. Impact of food viscosity on in vitro gastric emptying using dynamic and semi-dynamic models. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
A structural explanation for protein digestibility changes in different food matrices. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Li CH, Shelp G, Wright A. Influence of Nut Structure and Processing on Lipid Bioaccessibility and Absorption. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Hao J, Li X, Wang Q, Lv W, Zhang W, Xu D. Recent developments and prospects in the extraction, composition, stability, food applications, and
in vitro
digestion of plant oil bodies. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jia Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Xiaoyu Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Qiuyu Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenwen Lv
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Wenguan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Key Laboratory of Flavor Chemistry, Beijing Laboratory for Food Quality and Safety Beijing Technology and Business University Beijing China
| |
Collapse
|
12
|
Xin L, Zhang Y, Duan W, Ai M, Song H, Huang Q, Lu J. Effect of malondialdehyde oxidation on structure and physicochemical properties of amandin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Luo Xin
- Production and Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang Xinjiang 843300 China
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
- School of Public Health The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang 550000 China
| | - Yufeng Zhang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Wenshan Duan
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Mingyan Ai
- Production and Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang Xinjiang 843300 China
| | - Hongbo Song
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Qun Huang
- College of Food Science Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
- School of Public Health The Key Laboratory of Environmental Pollution Monitoring and Disease Control Ministry of Education Guizhou Medical University Guiyang 550000 China
| | - Jiankang Lu
- Production and Construction Group Key Laboratory of Special Agricultural Products Further Processing in Southern Xinjiang Xinjiang 843300 China
| |
Collapse
|
13
|
Wang X, Ye A, Dave A, Singh H. Structural changes in oat milk and an oat milk‒bovine skim milk blend during dynamic in vitro gastric digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Zhang C, Ritzoulis C, Jin Z, Cui W, Li X, Han J, Liu W. Yellow and Black Soybean Pellet Degradation and Nutrients Hydrolysis During In Vitro Gastrointestinal Digestion. FOOD BIOPHYS 2022. [DOI: 10.1007/s11483-022-09717-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Wang X, Wolber FM, Ye A, Stroebinger N, Hamlin A, Zhu P, Montoya CA, Singh H. Gastric digestion of cow milk, almond milk and oat milk in rats. Food Funct 2022; 13:10981-10993. [DOI: 10.1039/d2fo02261c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, gastric digestion of isocaloric and iso-macronutrient cow milk, almond milk and oat milk were compared in rats euthanized at different post-feeding times.
Collapse
Affiliation(s)
- Xin Wang
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Frances M. Wolber
- Massey Institute of Food Science and Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Natascha Stroebinger
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Aimee Hamlin
- Massey Institute of Food Science and Technology, Massey University, Private Bag 11 222, Palmerston North, 4442, New Zealand
| | - Peter Zhu
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Carlos A. Montoya
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
- Smart Foods and Bioproducts, Te Ohu Rangahau Kai Facility, AgResearch Limited, Palmerston North 4474, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
16
|
|
17
|
Acevedo-Fani A, Singh H. Biophysical insights into modulating lipid digestion in food emulsions. Prog Lipid Res 2021; 85:101129. [PMID: 34710489 DOI: 10.1016/j.plipres.2021.101129] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/14/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
During the last decade, major scientific advances on understanding the mechanisms of lipid digestion and metabolism have been made, with a view to addressing health issues (such as obesity) associated with overconsumption of lipid-rich and sucrose-rich foods. As lipids in common foods exist in the form of emulsions, the structuring of emulsions has been one the main strategies for controlling the rate of lipid digestion and absorption, at least from a colloid science viewpoint. Modulating the kinetics of lipid digestion and absorption offers interesting possibilities for developing foods that can provide control of postprandial lipaemia and control the release of lipophilic compounds. Food emulsions can be designed to achieve considerable differences in the kinetics of lipid digestion but most research has been applied to relatively simple model systems and in in vitro digestion models. Further research to translate this knowledge into more complex food systems and to validate the results in human studies is required. One promising approach to delay/control lipid digestion is to alter the stomach emptying rate of lipids, which is largely affected by interactions of emulsion droplets with the food matrices. Food matrices with different responses to the gastric environment and with different interactions between oil droplets and the food matrix can be designed to influence lipid digestion. This review focuses on key scientific advances made during the last decade on understanding the physicochemical and structural modifications of emulsified lipids, mainly from a biophysical science perspective. The review specifically explores different approaches by which the structure and stability of emulsions may be altered to achieve specific lipid digestion kinetics.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
18
|
|
19
|
Development of Probiotic Almond Beverage Using Lacticaseibacillus rhamnosus GR-1 Fortified with Short-Chain and Long-Chain Inulin Fibre. FERMENTATION 2021. [DOI: 10.3390/fermentation7020090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Plant-based beverages are growing in popularity due to the rise of vegetarianism and other health trends. A probiotic almond beverage that combines the properties of almonds, inulin, and Lacticaseibacillusrhamnosus GR-1 may meet the demand for a non-dairy health-promoting food. The purpose of this study was to investigate the viability of L. rhamnosus GR-1 and pH in five fermented almond beverage samples, supplemented with either 2% or 5% (w/v) short-chain or long-chain inulin over 9 h of fermentation and 30 days of refrigerated storage. All almond beverage samples achieved a mean viable count of at least 107 CFU/mL during 9h of fermentation and 30 days of refrigerated storage. The probiotic almond beverage supplemented with 2% (w/v) short-chain inulin had a significantly higher mean microbial count (p = 0.048) and lower pH (p < 0.001) throughout fermentation, while the control and the long-chain inulin treatments had the lowest viable counts and acidity, respectively. This study shows that the addition of short-chain and long-chain inulin had no adverse effects on the viability of L. rhamnosus GR-1. Therefore, the probiotic almond beverage has the potential to be a valid alternative to dairy-based probiotic products.
Collapse
|
20
|
Yan CH, Xun XM, Wang J, Wang JZ, You S, Wu FA, Wang J. An alternative solution for α-linolenic acid supplements: in vitro digestive properties of silkworm pupae oil in a pH-stat system. Food Funct 2021; 12:2428-2441. [PMID: 33624675 DOI: 10.1039/d0fo03469j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
α-Linolenic acid (ALA) is recognised to have a regulatory effect on cardiovascular diseases. Due to the low bioavailability of linseed oil (LINO), which is the most common ALA supplement, it is necessary to find a replacement for ALA supplements that is more easily accepted by the human body. The content of ALA in silkworm pupae oil (SPO) is 32.60 ± 0.67%, and SPO can be substituted as a dietary lipid to meet the demand of the human body. In the present study, a pH-stat system was used to investigate the release degree of free fatty acids (FFAs) from SPO and construct a first-order kinetic model. Digestion experiments in vitro with different lipids showed that the maximum release FFA levels were SPO > SO (soybean oil) > LO (lard oil) > MSO (mulberry seed oil) > LINO, and the first-order kinetic apparent rate constants were LINO > SPO > LO > SO > MSO. Triacylglycerol (TAG) and fatty acid composition are the decisive factors in determining the level of lipid digestion. Therefore, the maximum level of FFAs released from SPO (84.34 ± 1.37%) was much higher than that of LINO (49.78 ± 0.52%) when the hydrolysis rates were 0.2114 s-1 and 0.2249 s-1, respectively. In addition, the smaller emulsion droplet size (609.24 ± 43.46 nm) and weaker surface charge (-17.93 ± 0.42 mV) also resulted in higher levels of SPO under in vitro digestion conditions. Meanwhile, due to low melting and crystallisation temperature, SPO is quickly absorbed by the human body. Overall, SPO can be used as a new alternative for ALA supplements based on its superior digestive properties.
Collapse
Affiliation(s)
- Cheng-Hai Yan
- Jiangsu Key Laboratory of Sericutural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China.
| | | | | | | | | | | | | |
Collapse
|
21
|
Wang X, Ye A, Dave A, Singh H. In vitro digestion of soymilk using a human gastric simulator: Impact of structural changes on kinetics of release of proteins and lipids. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106235] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
22
|
Acevedo-Fani A, Dave A, Singh H. Nature-Assembled Structures for Delivery of Bioactive Compounds and Their Potential in Functional Foods. Front Chem 2020; 8:564021. [PMID: 33102443 PMCID: PMC7546791 DOI: 10.3389/fchem.2020.564021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/12/2020] [Indexed: 11/28/2022] Open
Abstract
Consumers are demanding more natural, healthy, and high-quality products. The addition of health-promoting substances, such as bioactive compounds, to foods can boost their therapeutic effect. However, the incorporation of bioactive substances into food products involves several technological challenges. They may have low solubility in water or poor stability in the food environment and/or during digestion, resulting in a loss of their therapeutic properties. Over recent years, the encapsulation of bioactive compounds into laboratory-engineered colloidal structures has been successful in overcoming some of these hurdles. However, several nature-assembled colloidal structures could be employed for this purpose and may offer many advantages over laboratory-engineered colloidal structures. For example, the casein micelles and milk fat globules from milk and the oil bodies from seeds were designed by nature to deliver biological material or for storage purposes. These biological functional properties make them good candidates for the encapsulation of bioactive compounds to aid in their addition into foods. This review discusses the structure and biological function of different nature-assembled carriers, preparation/isolation methods, some of the advantages and challenges in their use as bioactive compound delivery systems, and their behavior during digestion.
Collapse
Affiliation(s)
- Alejandra Acevedo-Fani
- Riddet Institute, Massey University, Palmerston North, New Zealand
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Anant Dave
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Harjinder Singh
- Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|