1
|
García-Villegas A, Fernández-Ochoa Á, Alañón ME, Rojas-García A, Arráez-Román D, Cádiz-Gurrea MDLL, Segura-Carretero A. Bioactive Compounds and Potential Health Benefits through Cosmetic Applications of Cherry Stem Extract. Int J Mol Sci 2024; 25:3723. [PMID: 38612532 PMCID: PMC11011441 DOI: 10.3390/ijms25073723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Cherry stems, prized in traditional medicine for their potent antioxidant and anti-inflammatory properties, derive their efficacy from abundant polyphenols and anthocyanins. This makes them an ideal option for addressing skin aging and diseases. This study aimed to assess the antioxidant and anti-inflammatory effects of cherry stem extract for potential skincare use. To this end, the extract was first comprehensively characterized by HPLC-ESI-qTOF-MS. The extract's total phenolic content (TPC), antioxidant capacity, radical scavenging efficiency, and its ability to inhibit enzymes related to skin aging were determined. A total of 146 compounds were annotated in the cherry stem extract. The extract effectively fought against NO· and HOCl radicals with IC50 values of 2.32 and 5.4 mg/L. Additionally, it inhibited HYALase, collagenase, and XOD enzymes with IC50 values of 7.39, 111.92, and 10 mg/L, respectively. Based on the promising results that were obtained, the extract was subsequently gently integrated into a cosmetic gel at different concentrations and subjected to further stability evaluations. The accelerated stability was assessed through temperature ramping, heating-cooling cycles, and centrifugation, while the long-term stability was evaluated by storing the formulations under light and dark conditions for three months. The gel formulation enriched with cherry stem extract exhibited good stability and compatibility for topical application. Cherry stem extract may be a valuable ingredient for creating beneficial skincare cosmeceuticals.
Collapse
Affiliation(s)
- Abigail García-Villegas
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Álvaro Fernández-Ochoa
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María Elena Alañón
- Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela 10, 13071 Ciudad Real, Spain;
- Department of Analytical Chemistry and Food Science and Technology, University of Castilla-La Mancha, Ronda de Calatrava 7, 13071 Ciudad Real, Spain
| | - Alejandro Rojas-García
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - María de la Luz Cádiz-Gurrea
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain; (A.G.-V.); (Á.F.-O.); (A.R.-G.); (D.A.-R.); (A.S.-C.)
| |
Collapse
|
2
|
Barreto-Peixoto JA, Silva C, Costa ASG, Álvarez-Rivera G, Cifuentes A, Ibáñez E, Oliveira MBPP, Alves RC, Martel F, Andrade N. A Prunus avium L. Infusion Inhibits Sugar Uptake and Counteracts Oxidative Stress-Induced Stimulation of Glucose Uptake by Intestinal Epithelial (Caco-2) Cells. Antioxidants (Basel) 2023; 13:59. [PMID: 38247483 PMCID: PMC10812648 DOI: 10.3390/antiox13010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Sweet cherry (Prunus avium L.) is among the most valued fruits due to its organoleptic properties and nutritional worth. Cherry stems are rich in bioactive compounds, known for their anti-inflammatory and antioxidant properties. Innumerable studies have indicated that some bioactive compounds can modulate sugar absorption in the small intestine. In this study, the phenolic profile of a cherry stem infusion was investigated, as well as its capacity to modulate intestinal glucose and fructose transport in Caco-2 cells. Long-term (24 h) exposure to cherry stem infusion (25%, v/v) significantly reduced glucose (3H-DG) and fructose (14C-FRU) apical uptake, reduced the apical-to-basolateral Papp to 3H-DG, and decreased mRNA expression levels of the sugar transporters SGLT1, GLUT2 and GLUT5. Oxidative stress (induced by tert-butyl hydroperoxide) caused an increase in 3H-DG uptake, which was abolished by the cherry stem infusion. These findings suggest that cherry stem infusion can reduce the intestinal absorption of both glucose and fructose by decreasing the gene expression of their membrane transporters. Moreover, this infusion also appears to be able to counteract the stimulatory effect of oxidative stress upon glucose intestinal uptake. Therefore, it can be a potentially useful compound for controlling hyperglycemia, especially in the presence of increased intestinal oxidative stress levels.
Collapse
Affiliation(s)
- Juliana A. Barreto-Peixoto
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Cláudia Silva
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Anabela S. G. Costa
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Gerardo Álvarez-Rivera
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - Elena Ibáñez
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolas Cabrera 9, 28049 Madrid, Spain; (G.Á.-R.); (A.C.); (E.I.)
| | - M. Beatriz P. P. Oliveira
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Rita C. Alves
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
| | - Fátima Martel
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, 4200-135 Porto, Portugal
| | - Nelson Andrade
- REQUIMTE/LAQV, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (J.A.B.-P.); (C.S.); (A.S.G.C.); (M.B.P.P.O.); (R.C.A.)
- Unit of Biochemistry, Department of Biomedicine, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal
| |
Collapse
|
3
|
Decot H, Sudhakaran M, Boismier E, Schilmiller A, Claucherty E, Doseff AI, Aliakbarian B. Tart Cherry ( Prunus cerasus L.) Pit Extracts Protect Human Skin Cells against Oxidative Stress: Unlocking Sustainable Uses for Food Industry Byproducts. Foods 2023; 12:3748. [PMID: 37893640 PMCID: PMC10606708 DOI: 10.3390/foods12203748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/25/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Industrial processing of tart cherries (Prunus cerasus L.) produces bioproducts like cherry pits (CP), which contribute to adverse environmental effects. To identify sustainable strategies to minimize the environmental impact of cherry processing, we investigated their potential value as antioxidants for prospective utilization within cosmeceutical applications. Untargeted metabolomic analyses of water and water: ethanol CP extracts using an eco-friendly technique revealed significant enrichment in coumaroyl derivatives and flavonoids with congruent metabolite representation regardless of the extraction solvent. The antioxidant activity of tart CP extracts was evaluated on human skin cells exposed to H2O2 or LPS, modeling environmentally induced oxidants. Notably, both CP extracts provide antioxidant activity by reducing H2O2 or LPS-induced ROS in human skin keratinocytes without affecting cell viability. The CP extracts increased the expression of CAT and SOD1 genes encoding antioxidant regulatory enzymes while decreasing the expression of NOS2, a pro-oxidant regulator. These findings reveal the antioxidant properties of tart CP, offering new opportunities to produce natural-based skin care products and adding economic value while providing sustainable options to reduce the environmental impact of food byproducts.
Collapse
Affiliation(s)
- Hannah Decot
- Molecular, Cellular, and Integrative Physiology Graduate Program, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA; (H.D.); (M.S.)
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
| | - Meenakshi Sudhakaran
- Molecular, Cellular, and Integrative Physiology Graduate Program, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA; (H.D.); (M.S.)
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
| | - Emma Boismier
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
| | - Anthony Schilmiller
- Mass Spectrometry and Metabolomics Core, Michigan State University, 603 Wilson Rd., East Lansing, MI 48824, USA;
| | - Ethan Claucherty
- The Axia Institute, Michigan State University, 1910 W. St. Andrews Rd., Midland, MI 49640, USA;
| | - Andrea I. Doseff
- Department of Physiology, Michigan State University, 567 Wilson Rd., East Lansing, MI 48824, USA;
- Department of Pharmacology and Toxicology, Michigan State University, 1355 Bogue St., East Lasing, MI 48824, USA
| | - Bahar Aliakbarian
- The Axia Institute, Michigan State University, 1910 W. St. Andrews Rd., Midland, MI 49640, USA;
- Department of Biosystems and Agricultural Engineering, Michigan State University, 524 S Shaw Lane, East Lansing, MI 48824, USA
| |
Collapse
|
4
|
Contribution of Phenolics and Free Amino Acids on the Antioxidant Profile of Commercial Lemon Verbena Infusions. Antioxidants (Basel) 2023; 12:antiox12020251. [PMID: 36829811 PMCID: PMC9952217 DOI: 10.3390/antiox12020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Lemon verbena infusions are widely appreciated due to their agreeable lemony flavor and medicinal properties. In this study, the antioxidant potential, phenolic profile, and free amino acid profile of lemon verbena infusions from different commercial brands were studied. Characterization by UHPLC-QTOF-HRMS allowed the identification of 34 phenolics. The free amino acid profile (by RP-HPLC-FLD) was assessed for the first time, allowing the quantification of 16 amino acids. Furthermore, the infusions showed high antioxidant activity by different assays (ferric reducing antioxidant power, DPPH• scavenging, and oxygen radical absorbance capacity assays), which in turn were significantly correlated with total phenolics and total flavonoid contents. Notwithstanding, phenylalanine seemed to have also an impact on the antioxidant activity of the infusions, with significant correlations found. Finally, significant differences were found in all the evaluated parameters for one of the four commercial brands herein studied, which was possibly related to the different geographical origins of this sample. Overall, these lemon verbena infusions proved to be rich in a huge variety of bioactive compounds that can provide therapeutic potential.
Collapse
|
5
|
Aqil Y, Hajjaji SE, Belmaghraoui W, Mourabit Y, Taha D, Alshahrani MM, Al Awadh AA, Bouyahya A, Gaamoussi I, Bourais I. Phenolic Profile, Antioxidant, Antidiabetic, and Antigout Potential of Stem Extracts of Four Sweet Cherry Cultivars. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8535139. [PMID: 37187921 PMCID: PMC10181899 DOI: 10.1155/2023/8535139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/26/2022] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
In order to highlight the activities of bioactive compounds present in the stem of sweet cherries, four different cultivars (Van, Burlat, Napoleon, and Cœur pigeon) were collected in Sefrou city in Morocco and were studied. Several assays were performed for this purpose, such as the quantification of phenolic compounds (TPC, TFC, and CTC) and the evaluation of the antioxidant activity using DPPH, ABTS, and FRAP assays. The phenolic profile of each extract was characterized by UHPLC-DAD/MS analysis. The antidiabetic (α-amylase inhibition) and antigout (xanthine oxidase inhibition) activities were also investigated. The results showed high levels of phenolic compounds, with the values of 340 ± 12.06, 244 ± 10.20, 232 ± 5.07, and 19 ± 3.10 mg gallic acid equivalent/g extract for the cultivars Napoleon, Coeur de pigeon, Van, and Burlat, respectively. According to the same order, the flavonoids showed amounts of 34.31 ± 2.08, 23.75 ± 1.02, 24.37 ± 1.20, and 23.31 ± 0.90 mg (rutin equivalent) RE/g extract. These values were correlated with the results of the antioxidant assays, where the Napoleon cultivar proved to be the most potent using the DPPH (IC50 = 2.51 µg/mL) and ABTS (IC50 = 55.38 µg/mL) assays. The phenolic profile of each extract resulted in the identification of twenty-two compounds belonging to five distinct groups. The major phenolic compounds identified were sakuranetin and dihydrowgonin with their glucosides. Antidiabetic activity assays showed that only stem extracts from Burlat and Napoleon cultivars were able to inhibit the α-amylase enzyme with values of 85.57 ± 1.09% and 68.01 ± 3.52%, respectively. All stem extracts proved their ability to inhibit the xanthine oxidase enzyme which is directly linked to the gout disease, with a high value for Van cultivar (40.63 ± 2.37%). These new findings could provide new opportunities for the valorization of cherry stems for the pharmaceutical application of their active phytochemicals.
Collapse
Affiliation(s)
- Younes Aqil
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials, Water and Environment Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Souad El Hajjaji
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials, Water and Environment Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Walid Belmaghraoui
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials, Water and Environment Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Yassine Mourabit
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials, Water and Environment Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Douae Taha
- Laboratory of Spectroscopy, Molecular Modelling Materials, Nanomaterials, Water and Environment Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Issam Gaamoussi
- Laboratory of Research and Development, AROMI Sarl, 197 BD, Casablanca, Morocco
| | - Ilhame Bourais
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| |
Collapse
|
6
|
By-products of dates, cherries, plums and artichokes: A source of valuable bioactive compounds. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Increase in thermal stability of strawberry anthocyanins with amino acid copigmentation. Food Chem 2022; 384:132518. [PMID: 35219234 DOI: 10.1016/j.foodchem.2022.132518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/23/2022]
Abstract
Copigmentation effects of aspartic acid, proline and valine on individual anthocyanins in strawberry juice (SJ) were investigated during heating at 90, 105 and 150 °C. Aspartic acid increased (4.5-45.6%) total anthocyanin stability at all temperatures, while proline and valine had no effect at 90 °C but reduced (2.2-19.4%) stability at 150 °C. At 90 °C, aspartic acid and valine caused the highest Amax. Evaluating changes in individual anthocyanin contents, Amax, colour density and polymeric colour of SJs together revealed that aspartic acid had copigmentation effects on pelargonidin-3-glucoside and pelargonidin-3-rutinoside, whereas valine on pelargonidin-3-glucoside and cyanidin-3-glucoside. At 105 °C, all amino acids increased (7.9-33.1%) stabilities of pelargonidin-3-glucoside, pelargonidin-3-rutinoside, Amax and colour density all of which together pointed out the copigmentation. At 150 °C, interactions between "aspartic acid-pelargonidin-3-glucoside," "proline-pelargonidin-3-rutinoside" and "valine-pelargonidin-3-rutinoside" resulted in high colour density. Thus, among these amino acids, selection should be based on the heating temperature and anthocyanin profile of the product.
Collapse
|
8
|
Fatima H, Shahid M, Jamil A, Naveed M. Therapeutic Potential of Selected Medicinal Plants Against Carrageenan Induced Inflammation in Rats. Dose Response 2021; 19:15593258211058028. [PMID: 34867126 PMCID: PMC8641123 DOI: 10.1177/15593258211058028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
The current study was aimed to analyze the therapeutic effect of selected medicinal plants, that is, Curcuma longa, Zingiber officinale, Trigonella graceum-foenum, Nigella sativa, and Syzygium aromaticum against carrageenan-induced oxidative stress and inflammation in rats. Phytochemical analysis revealed the presence of diverse range of bioactives. IC50 values for antioxidant assays including DPPH (2,2-diphenyl-1-picrylhydrazyl), metal chelating, ABTS scavenging (2, 2′-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid), β-carotene bleaching, and H2O2 (hydrogen peroxide) scavenging ranged from 37-294, 71-243.4, 69.66-191.8, 98.92-228.5, and 82-234.9 μg/mL, respectively. All tested plants extract were found active against tested pathogenic microorganisms with lowest minimum inhibitory concentrations. Oral administration of tested plants extracts in different doses (250, 500, and 1000 mg/kg b. w) did not exhibit any toxicological effects on hemato-biochemical profile of treated rats in comparison to control group rats. Further, plants extract exhibited considerable anti-inflammatory activity in rats paw inflammation and decreased cellular infiltration to inflammatory site in dose dependent manner. Pretreatment of animals with tested plants extract (100, 200, and 400 mg/kg b. w.) caused significant alteration in total antioxidants, oxidants, and enzymes activities in paw tissue homogenate and the effect was more pronounced at higher concentration (400 mg/kg b. w.). Results showed that tested plants extract are rich source of diverse classes of phenolics and have therapeutic potential against oxidative stress and inflammation.
Collapse
Affiliation(s)
- Hina Fatima
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
9
|
Babotă M, Voştinaru O, Păltinean R, Mihali C, Dias MI, Barros L, Ferreira ICFR, Mocan A, Crişan O, Nicula C, Crişan G. Chemical Composition, Diuretic, and Antityrosinase Activity of Traditionally Used Romanian Cerasorum stipites. Front Pharmacol 2021; 12:647947. [PMID: 34045959 PMCID: PMC8144643 DOI: 10.3389/fphar.2021.647947] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/09/2021] [Indexed: 11/29/2022] Open
Abstract
Cherry stems (CS) represent a by-product intensively used in Eastern European countries as a traditional remedy for urinary tract disorders. Ethnopharmacological evidences sustain the use of CS as aqueous preparations (infusion and decoction), but few data were previously reported about phytochemical profile and pharmacological potential of CS hydroalcoholic extracts. In this regard, we aimed to evaluate the phenolic profile, in vitro antioxidant and tyrosinase inhibitory potential, and in vivo diuretic activity of 70% hydroethanolic cherry stems extract and cherry stems decoction (CSD). LC-DAD-ESI/MSn analysis revealed the presence of flavonoid-type compounds as main constituents for both preparations, especially flavanones (naringenin glycosides). Antioxidant activity evaluated through DPPH, ABTS, and FRAP methods was superior for cherry stems extract, probably due to the presence of phenolic-derived compounds in higher amounts than CSD. On the other hand, tyrosinase inhibitory potential and diuretic effect exerted by CSD were stronger, highlighting that other types of hydrophilic secondary metabolites are responsible for this bioactivity. Overall, our findings indicate that CS preparations could be used as promising mild diuretic agents and encourage further investigations regarding the correlation between their chemical composition and bioactive potential.
Collapse
Affiliation(s)
- Mihai Babotă
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Oliviu Voştinaru
- Department of Pharmacology, Physiology and Physiopathology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ramona Păltinean
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cosmin Mihali
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, Bragança, Portugal
| | - Andrei Mocan
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Laboratory of Chromatography, ICHAT, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Cluj-Napoca, Romania
| | - Ovidiu Crişan
- Department of Organic Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Nicula
- Department of Ophthalmology, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Gianina Crişan
- Department of Pharmaceutical Botany, "Iuliu Haţieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
10
|
Anti-browning effect of Rosa roxburghii on apple juice and identification of polyphenol oxidase inhibitors. Food Chem 2021; 359:129855. [PMID: 33940475 DOI: 10.1016/j.foodchem.2021.129855] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 02/07/2023]
Abstract
Enzymatic browning control of cloudy fruit juice with natural substances has received much attention for improving its nutritional and commercial value. This study explored the anti-browning potential of Rosa roxburghii in apple juice. The anti-browning effects and mechanisms were evaluated by serial measurements of appearance, browning index, polyphenol oxidase (PPO) activity, UPLC-QE-Orbitrap-MS identification, inhibition kinetics and molecular docking. The results showed that Rosa roxburghii juice (0.25%-1.25% w/w) could effectively inhibit browning and PPO activity of apple juice. Ascorbic acid (1.67 g/100 g) as a reducing agent was a main anti-browning factor. Furthermore, seven phenolic compounds in Rosa roxburghii were screened as PPO inhibitors. Representative phenolic inhibitors induced mixed or competitive inhibition of PPO, mainly driven by hydrophobic forces and hydrogen bonds. This work demonstrates that Rosa roxburghii is a promising natural anti-browning ingredient to control the browning of cloudy apple juice due to abundant ascorbic acid and PPO inhibitors.
Collapse
|
11
|
Comprehensive Phenolic and Free Amino Acid Analysis of Rosemary Infusions: Influence on the Antioxidant Potential. Antioxidants (Basel) 2021; 10:antiox10030500. [PMID: 33807074 PMCID: PMC8004834 DOI: 10.3390/antiox10030500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
The phenolics profile, free amino acids composition, and antioxidant potential of rosemary infusions were studied. Forty-four compounds belonging to nine different groups (hydroxybenzoic acids, hydroxycinnamic acids, flavan-3-ols, flavanones, flavones, phenolic diterpenes, hydroxybenzaldehydes, coumarins, and pyranochromanones) were identified by UHPLC-ESI-Q-TOF-MS. Of these, seven were firstly described in rosemary infusions: a rosmanol derivative, two dihydroxycoumarin hexosides, a hydroxybenzaldehyde, a dihydroxybenzoic acid hexoside, coumaric acid hexoside, and isocalolongic acid. The free amino acid profile of the beverages was also reported by the first time with seven amino acids found (asparagine, threonine, alanine, tyrosine, phenylalanine, isoleucine, and proline). Furthermore, DPPH• scavenging ability, Ferric Reducing Antioxidant Power and Oxygen Radical Absorbance Capacity, as well as total phenolics and flavonoids contents, were assessed. Overall, rosemary infusions showed to be a very good source of antioxidants. A 200 mL cup of this infusion contributes to the ingestion of ~30 mg of phenolic compounds and about 0.5–1.1 μg of free amino acids. This type of beverages may present a positive impact on the maintenance of the body antioxidant status and contribute to the prevention of oxidative stress related diseases.
Collapse
|
12
|
Enzyme-Assisted Release of Antioxidant Peptides from Porphyra dioica Conchocelis. Antioxidants (Basel) 2021; 10:antiox10020249. [PMID: 33562036 PMCID: PMC7915985 DOI: 10.3390/antiox10020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 11/25/2022] Open
Abstract
The conchocelis life cycle stage of P. dioica represents an unexplored source of bioactive compounds. The aim of this study was to generate and characterise, for the first time, hydrolysates of conchocelis using a specific combination of proteases (Prolyve® and Flavourzyme®). Hydrolysate molecular mass distribution and free amino acid contents were assessed, and the antioxidant activity was determined using a range of in vitro assays. The protein content and the total amino acid profiles of conchocelis were also studied. Conchocelis contained ~25% of protein (dry weight basis) and had a complete profile of essential amino acids. Direct sequential enzymatic treatment modified the profile of the generated compounds, increasing the amount of low molecular weight peptides (<1 kDa). There was a significant improvement in the antioxidant activity of the hydrolysates compared with the control (up to 2.5-fold), indicating their potential as a novel source of antioxidant ingredients.
Collapse
|
13
|
Afonso S, Oliveira IV, Meyer AS, Aires A, Saavedra MJ, Gonçalves B. Phenolic Profile and Bioactive Potential of Stems and Seed Kernels of Sweet Cherry Fruit. Antioxidants (Basel) 2020; 9:antiox9121295. [PMID: 33348687 PMCID: PMC7766571 DOI: 10.3390/antiox9121295] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Every year, large quantities of stems and pits are generated during sweet cherry processing, without any substantial use. Although stems are widely recognized by traditional medicine, detailed and feasible information about their bioactive composition or biological value is still scarce, as well as the characterization of kernels. Therefore, we conducted a study in which bioactivity potential of extracts from stems and kernels of four sweet cherry cultivars (Early Bigi (grown under net cover (C) and without net cover (NC)), Burlat, Lapins, and Van) were examined. The assays included antioxidant (by 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic) acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and β-carotene-linoleic acid bleaching assays), and antibacterial activities against important Gram negative and Gram positive bacterial human isolates. Profile and individual phenolic composition of each extract were determined by High-performance liquid chromatography (HPLC) analysis. Extracts from stems of cv. Lapins and kernels of Early Bigi NC presented high levels of total phenolics, flavonoids, ortho-diphenols and saponins. Excepting for cv. Early Bigi NC, major phenolic compounds identified in stems and kernels were sakuranetin and catechin, respectively. In cv. Early Bigi NC the most abundant compounds were ellagic acid for stems and protocatechuic acid for kernels. In all extracts, antioxidant activities showed a positive correlation with the increments in phenolic compounds. Antimicrobial activity assays showed that only stem’s extracts were capable of inhibiting the growth of Gram positive isolates. This new data is intended to provide new possibilities of valorization of these by-products and their valuable properties.
Collapse
Affiliation(s)
- Sílvia Afonso
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
- Correspondence:
| | - Ivo Vaz Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
| | - Anne S. Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DTU Building 221, DK-2800 Kgs. Lyngby, Denmark;
| | - Alfredo Aires
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
| | - Maria José Saavedra
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
| | - Berta Gonçalves
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences—CITAB, University of Trás-os-Montes e Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal; (I.V.O.); (A.A.); (M.J.S.); (B.G.)
| |
Collapse
|