1
|
Tong A, Wang D, Jia N, Zheng Y, Qiu Y, Chen W, El-Seed HR, Zhao C. Algal Active Ingredients and Their Involvement in Managing Diabetic Mellitus. BIOLOGY 2024; 13:904. [PMID: 39596859 PMCID: PMC11591677 DOI: 10.3390/biology13110904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Diabetes mellitus (DM) is becoming increasingly prominent, posing a serious threat to human health. Its prevalence is rising every year, and often affects young people. In the past few decades, research on marine algae has been recognized as a major field of drug discovery. Seaweed active substances, including algal polysaccharides, algal polyphenols, algal unsaturated fatty acids, and algal dietary fiber, have unique biological activities. This article reviews the effects and mechanisms of the types, structures, and compositions of seaweed on inhibiting glucose and lipid metabolism disorders, with a focus on the inhibitory effect of active substances on blood glucose reduction. The aim is to provide a basis for the development of seaweed active substance hypoglycemic drugs.
Collapse
Affiliation(s)
- Aijun Tong
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China;
| | - Dengwei Wang
- Department of Chronic and Noncommunicable Disease Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou 350012, China;
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
| | - Nan Jia
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yusong Qiu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weichao Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hesham R. El-Seed
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou 350002, China (W.C.)
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Lei Z, Shi Y, Zou J, Zhang X, Xin B, Guo D, Sun J, Luan F. A review of the polysaccharides against fatigue and the underlying mechanism. Int J Biol Macromol 2024; 275:133601. [PMID: 38969031 DOI: 10.1016/j.ijbiomac.2024.133601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Fatigue is a common physiological state that affects normal human activities. Prolonged fatigue induces a variety of diseases and seriously affects human health, so it is imperative to discover nutritional dietary supplements and treatments without side effects, among which natural anti-fatigue polysaccharides have shown great potential. Polysaccharides, a class of biomolecules produced by a variety of organisms such as plants, animals, bacteria and algae, have attracted much attention in recent years due to their anti-fatigue activity and fewer side effects. This review summarizes the classification, dosage and experimental models of polysaccharides with anti-fatigue activity obtained from different natural sources. We also review the fatigue-relieving effects of these polysaccharides through mechanisms such as modulating oxidative damage, regulating energy metabolism and influencing intestinal flora, as well as the effects of molecular weights, monosaccharide compositions, structural features and chemical modifications of the polysaccharides on their anti-fatigue activities to support their potential application value in functional foods and pharmaceuticals. New valuable insights for future research on natural polysaccharides are also presented in the field of natural production of bio-based functional materials, functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Ziwen Lei
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
3
|
Yang Y, Feng Z, Luo YH, Chen JM, Zhang Y, Liao YJ, Jiang H, Long Y, Wei B. Exercise-Induced Central Fatigue: Biomarkers, and Non-Medicinal Interventions. Aging Dis 2024:AD.2024.0567. [PMID: 39012671 DOI: 10.14336/ad.2024.0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Fatigue, commonly experienced in daily life, is a feeling of extreme tiredness, shortage or lack of energy, exhaustion, and difficulty in performing voluntary tasks. Central fatigue, defined as a progressive failure to voluntarily activate the muscle, is typically linked to moderate- or light-intensity exercise. However, in some instances, high-intensity exercise can also trigger the onset of central fatigue. Exercise-induced central fatigue often precedes the decline in physical performance in well-trained athletes. This leads to a reduction in nerve impulses, decreased neuronal excitability, and an imbalance in brain homeostasis, all of which can adversely impact an athlete's performance and the longevity of their sports career. Therefore, implementing strategies to delay the onset of exercise-induced central fatigue is vital for enhancing athletic performance and safeguarding athletes from the debilitating effects of fatigue. In this review, we discuss the structural basis, measurement methods, and biomarkers of exercise-induced central fatigue. Furthermore, we propose non-pharmacological interventions to mitigate its effects, which can potentially foster improvements in athletes' performances in a healthful and sustainable manner.
Collapse
Affiliation(s)
- Ying Yang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Zhi Feng
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yu-Hang Luo
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Jue-Miao Chen
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yu Zhang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yi-Jun Liao
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Hui Jiang
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| | - Yinxi Long
- Department of Neurology, Affiliated Hengyang Hospital of Hunan Normal University &;amp Hengyang Central Hospital, Hengyang, 421001, China
| | - Bo Wei
- Institute of Translational Medicine, School of Basic Medical, Department of Special Medicine, School of Public Health, Hengyang Medical College, University of South China, Hengyang, 421001, China
| |
Collapse
|
4
|
Kong H, Xu T, Wang S, Zhang Z, Li M, Qu S, Li Q, Gao P, Cong Z. The molecular mechanism of polysaccharides in combating major depressive disorder: A comprehensive review. Int J Biol Macromol 2024; 259:129067. [PMID: 38163510 DOI: 10.1016/j.ijbiomac.2023.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.
Collapse
Affiliation(s)
- Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Min Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suyan Qu
- Tai 'an Taishan District People's Hospital, China
| | - Qinqing Li
- Shanxi University of Chinese Medicine, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Cancer Hospital of Shandong First Medical University, China.
| |
Collapse
|
5
|
Liu Y, Feng Z, Hu Y, Xu X, Kuang T, Liu Y. Polysaccharides derived from natural edible and medicinal sources as agents targeting exercise-induced fatigue: A review. Int J Biol Macromol 2024; 256:128280. [PMID: 38000591 DOI: 10.1016/j.ijbiomac.2023.128280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Exercise-induced fatigue (EF) is a common occurrence during prolonged endurance and excessive exercise and is mainly caused by energy depletion, harmful metabolite accumulation, oxidative stress, and inflammation. EF usually leads to a reduction in initiating or maintaining spontaneous activities and muscle performance and ultimately results in a decrease in the quality of life of people who engage in physical work. Therefore, the interest in investigating EF-targeting agents with minimal side effects and good long-term efficacy has substantially increased. Natural edible and medicinal polysaccharides have shown positive anti-EF effects, but the relevant reviews are rare. This review comprehensively summarizes studies on natural polysaccharides from edible and medicinal sources that can relieve EF and improve physical performance from the past decade, focusing on their sources, monosaccharide compositions, anti-EF effects, and possible molecular mechanisms. Most of these anti-EF polysaccharides are heteropolysaccharides and are mainly composed of glucose, arabinose, galactose, rhamnose, xylose, and mannose. In EF animal models, the polysaccharides exert positive EF-alleviating effects through energy supply, metabolic regulation, antioxidation, anti-inflammation, and gut microbiota remodeling. However, further studies are still needed to clarify the anti-EF effects of these polysaccharides on human beings. In summary, the present review expects to provide scientific data for the future research and development of natural polysaccharide-based anti-EF drugs, dietary supplements, and health-care products for specific fatigue groups.
Collapse
Affiliation(s)
- Yuzhou Liu
- Chengdu Sport University, Chengdu 610041, China
| | - Zige Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China; School of Pharmacy, Southwest Minzu University, Chengdu 610041, China
| | - Yao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China; School of Physical Education and Health, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China
| | - Xinmei Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China
| | - Tingting Kuang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China.
| | - Yue Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 610037, China.
| |
Collapse
|
6
|
Liao B, Zheng J, Xia C, Chen X, Xu Q, Duan B. The potential, challenges, and prospects of the genus Spirulina polysaccharides as future multipurpose biomacromolecules. Int J Biol Macromol 2023; 253:127482. [PMID: 37866586 DOI: 10.1016/j.ijbiomac.2023.127482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Spirulina has been widely used worldwide as a food and medicinal ingredient for centuries. Polysaccharides are major bioactive constituents of Spirulina and are of interest because of their functional properties and unlimited application potential. However, the clinical translation and market industrialization of the polysaccharides from genus Spirulina (PGS) are retarded due to the lack of a further understanding of their isolation, bioactivities, structure-activity relationships (SARs), toxicity, and, most importantly, versatile applications. Herein, we provide an overview of the extraction, purification, and structural features of PGS; meanwhile, the advances in bioactivities, SARs, mechanisms of effects, and toxicity are discussed and summarized. Furthermore, the applications, potential developments, and future research directions are scrutinized and highlighted. This review may help fill the knowledge gap between theoretical insights and practical applications and guide future research and industrial application of PGS.
Collapse
Affiliation(s)
- Binbin Liao
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Xubing Chen
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Qingshan Xu
- Lijiang Cheng Hai Bao Er Biological Development Co., Ltd, Lijiang, Yunnan 674100, China.
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
7
|
Zhou Y, Chu Z, Luo Y, Yang F, Cao F, Luo F, Lin Q. Dietary Polysaccharides Exert Anti-Fatigue Functions via the Gut-Muscle Axis: Advances and Prospectives. Foods 2023; 12:3083. [PMID: 37628082 PMCID: PMC10453516 DOI: 10.3390/foods12163083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Due to today's fast-paced lifestyle, most people are in a state of sub-health and face "unexplained fatigue", which can seriously affect their health, work efficiency, and quality of life. Fatigue is also a common symptom of several serious diseases such as Parkinson's, Alzheimer's, cancer, etc. However, the contributing mechanisms are not clear, and there are currently no official recommendations for the treatment of fatigue. Some dietary polysaccharides are often used as health care supplements; these have been reported to have specific anti-fatigue effects, with minor side effects and rich pharmacological activities. Dietary polysaccharides can be activated during food processing or during gastrointestinal transit, exerting unique effects. This review aims to comprehensively summarize and evaluate the latest advances in the biological processes of exercise-induced fatigue, to understand dietary polysaccharides and their possible molecular mechanisms in alleviating exercise-induced fatigue, and to systematically elaborate the roles of gut microbiota and the gut-muscle axis in this process. From the perspective of the gut-muscle axis, investigating the relationship between polysaccharides and fatigue will enhance our understanding of fatigue and may lead to a significant breakthrough regarding the molecular mechanism of fatigue. This paper will provide new perspectives for further research into the use of polysaccharides in food science and food nutrition, which could help develop potential anti-fatigue agents and open up novel therapies for sub-health conditions.
Collapse
Affiliation(s)
- Yaping Zhou
- National Engineering Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, China; (Y.Z.); (Z.C.); (F.Y.); (F.L.)
| | - Zhongxing Chu
- National Engineering Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, China; (Y.Z.); (Z.C.); (F.Y.); (F.L.)
| | - Yi Luo
- Department of Clinical Medicine, Medical College of Xiangya, Central South University, Changsha 410008, China;
| | - Feiyan Yang
- National Engineering Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, China; (Y.Z.); (Z.C.); (F.Y.); (F.L.)
| | - Fuliang Cao
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Feijun Luo
- National Engineering Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, China; (Y.Z.); (Z.C.); (F.Y.); (F.L.)
| | - Qinlu Lin
- National Engineering Research Center of Deep Process of Rice and Byproducts, Hunan Key Laboratory of Grain-Oil Deep Process and Quality Control, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha 410004, China; (Y.Z.); (Z.C.); (F.Y.); (F.L.)
| |
Collapse
|
8
|
Stefanutti D, Tonin G, Morelli G, Zampieri RM, La Rocca N, Ricci R. Oral Palatability and Owners' Perception of the Effect of Increasing Amounts of Spirulina ( Arthrospira platensis) in the Diet of a Cohort of Healthy Dogs and Cats. Animals (Basel) 2023; 13:1275. [PMID: 37106838 PMCID: PMC10135035 DOI: 10.3390/ani13081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
The nutraceutical supplementation of Spirulina (Arthrospira platensis) in dogs and cats has not yet been investigated. The aim of this study was to evaluate if the dietary supplementation of increasing amounts of Spirulina for 6 weeks is palatable to pets and to assess the owner's perception of such supplementation. The owners of the 60 dogs and 30 cats that participated in this study were instructed to daily provide Spirulina tablets starting with a daily amount of 0.4 g, 0.8 g, and 1.2 g for cats as well as small dogs, medium dogs, and large dogs, respectively, and allowing a dose escalation of 2× and 3× every 2 weeks. The daily amount (g/kg BW) of Spirulina ranged from 0.08 to 0.25 for cats, from 0.06 to 0.19 for small-sized dogs, from 0.05 to 0.15 for medium-sized dogs, and from 0.04 to 0.12 for large-sized dogs. Each owner completed a questionnaire at the time of recruitment and the end of each 2-week period. No significant effect on the fecal score, defecation frequency, vomiting, scratching, lacrimation, general health status, and behavioral attitudes was detected by the owners' reported evaluations. Most animals accepted Spirulina tablets either administrated alone or mixed with food in the bowl. Daily supplementation of Spirulina for 6 weeks in the amounts provided in this study is therefore palatable and well tolerated by dogs and cats.
Collapse
Affiliation(s)
- Davide Stefanutti
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy
| | - Gloria Tonin
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy
| | - Giada Morelli
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy
| | | | - Nicoletta La Rocca
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35151 Padova, PD, Italy
| | - Rebecca Ricci
- Department of Animal Medicine, Production and Health, University of Padova, Viale dell’Università 16, 35020 Legnaro, PD, Italy
- Vetekipp S.r.l., via del Cristo 326, 35127 Padova, PD, Italy
| |
Collapse
|
9
|
Polysaccharides from Spirulina platensis: Extraction methods, structural features and bioactivities diversity. Int J Biol Macromol 2023; 231:123211. [PMID: 36632963 DOI: 10.1016/j.ijbiomac.2023.123211] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Spirulina platensis, a well-known blue-green microalga cultivated and consumed in China and United States, is traditionally used as a food supplement and medical ingredient. Increasing evidence has confirmed that the Spirulina platensis polysaccharides (SPPs) are vital and representative pharmacologically active biomacromolecules and exhibit multiple health-promoting activities both in vivo and in vitro, such as those of anti-cancer, anti-oxidant, immunomodulatory, hypolipidemic and hypoglycemic, anti-thrombotic, anti-viral, regulation of the gut microbiota properties and other biological activity. The purpose of this review aims to comprehensively and systematically outline the extraction and purification methods, structural features, biological activities, underlying mechanisms, and toxicities of SPPs to support their potential utilization value in pharmaceuticals fields and functional foods. The structural and activities relationship of SPPs is also discussed. Besides, new valuable insights for future research with SPPs have also been proposed in the important areas of structural characterization and pharmacological activities.
Collapse
|
10
|
Liu D, Shi Z, Wang S, Zhai L, Gou D, Zhao J, Hu Y. Anti-oxidant and anti-fatigue properties of polysaccharides from black soybean hull. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2098971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Duo Liu
- College of Food Science and Engineering, Changchun University, Changchun, China
- School of Life Sciences, Changchun Normal University, Changchun, Changchun, China
| | - Zenghui Shi
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Siqi Wang
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Liyuan Zhai
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Dongxia Gou
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Jun Zhao
- College of Food Science and Engineering, Changchun University, Changchun, China
| | - Yanbo Hu
- College of Food Science and Engineering, Changchun University, Changchun, China
| |
Collapse
|
11
|
Du P, Du C, Wang R, Zhu H, Hua H, Cheng Y, Guo Y, Qian H. Caffeine combined with taurine improves cognitive function and locomotor performance in sleep-deprived mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
12
|
Zhu H, Wang C, Cheng Y, Guo Y, Qian H, Liu Y. Brassica rapa L. (Tibetan turnip) prevents sleep-deprivation induced cognitive deficits via the inhibition of neuroinflammation and mitochondrial depolarization. Food Funct 2022; 13:10610-10622. [PMID: 36168843 DOI: 10.1039/d2fo02649j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Brassica rapa L., an edible, feeding and medicinal plant cultivated on the Tibetan plateau with altitudes above 3800 m, has several pharmacological effects. However, its therapeutic effects against memory impairment and central fatigue have yet to be conclusively established. In this study, the Y-maze and Morris water maze tasks revealed that Brassica rapa L. aqueous extract (BE) significantly ameliorated cognitive deficits of sleep deprivation (SD)-treated mice. Moreover, BE treatment partially alleviated SD-induced reductions in the levels of peripheral energy metabolism, and significantly decreased inflammatory factor levels in serum and hippocampus. In addition, BE treatment significantly relieved central fatigue and stabilized the excitability as well as activities of neurons by regulating the levels of hypothalamus tryptophan metabolites and striatum neurotransmitters. The neuroprotective effects of BE were also confirmed using glutamate-treated HT22 cells, whereby BE pretreatment significantly attenuated intracellular ROS production and mitochondrial depolarization via adenosine 5'-monophosphate activated protein kinase/peroxisome proliferators-activated receptors (AMPK/PPAR-γ) signaling pathways. Thus, BE might probably prevent SD-induced learning and memory deficits by inhibiting neuroinflammation and restoring mitochondrial energy metabolism in the hippocampus. These findings imply that BE is a potential complementary therapy for those suffering from deficient sleep or neurometabolic disorders, although this needs verification by prospective clinical studies.
Collapse
Affiliation(s)
- Hongkang Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.,School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Cheng Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.,School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.,School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.,School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, China. .,Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, China.,School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu Province, 214122, China
| | - Yu Liu
- Wuxi 9th People's Hospital Affiliated to Soochow University, China.
| |
Collapse
|
13
|
Liu J, Zhu X, Sun L, Gao Y. Characterization and anti-diabetic evaluation of sulfated polysaccharide from Spirulina platensis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Liu S, Meng F, Zhang D, Shi D, Zhou J, Guo S, Chang X. Lonicera caerulea Berry Polyphenols Extract Alleviates Exercise Fatigue in Mice by Reducing Oxidative Stress, Inflammation, Skeletal Muscle Cell Apoptosis, and by Increasing Cell Proliferation. Front Nutr 2022; 9:853225. [PMID: 35356725 PMCID: PMC8959458 DOI: 10.3389/fnut.2022.853225] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
Exercise fatigue can exert deleterious effects on the body. This study evaluated the effects and mechanisms by which Lonicera caerulea berry polyphenols extract (LCBP) improved the treadmill endurance of mice. Comparison was performed between the effects at 25°C and low temperatures (-5°C). Energy storage, product metabolism, and other biochemical indices were determined using vitamin C (VC) as a positive control. Co-immunoprecipitation was performed to detect the interaction between different proteins. Dietary supplementation with LCBP significantly prolonged the exhaustion time during treadmill exercise by 20.4% (25 °C) and 27.4% (-5 °C). LCBP significantly regulated the expression of antioxidant and inflammatory proteins, Bcl-2 /Bax apoptosis proteins, and the PKCα -NOx2 / Nox4 pathway proteins, and activated the expression of AMPK-PGC1α -NRF1-TFAM proteins in skeletal muscle mitochondria. The gene and protein expression of miRNA-133a/IGF-1/PI3K/Akt/mTOR in skeletal muscle cells was also activated. Molecular docking confirmed that the main components of LCBP such as cyanidin-3-glucoside, catechin, and chlorogenic acid, have strong binding affinity toward AMPKα. LCBP alleviates exercise fatigue in mice by reducing oxidative stress, inflammation, and apoptosis of skeletal muscle cells, enhances mitochondrial biosynthesis and cell proliferation, reduces fatigue, and enhances performance. These effects are also significant in a low-temperature environment (Graphical Abstract). Consequently, these results provide novel insights into the anti- fatigue roles of LCBP in exercise fatigue.
Collapse
Affiliation(s)
- Suwen Liu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, China
| | - Fanna Meng
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Dong Zhang
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Donglin Shi
- Department of Physical Education, Hebei Sport University, Shijiazhuang, China
| | - Junyi Zhou
- Research Center of Sports Science, Hebei Institute of Sports Science, Shijiazhuang, China
| | - Shuo Guo
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xuedong Chang
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China.,Hebei Yanshan Special Industrial Technology Research Institute, Qinhuangdao, China
| |
Collapse
|
15
|
Zhu H, Wang R, Hua H, Cheng Y, Guo Y, Qian H, Du P. The macamide relieves fatigue by acting as inhibitor of inflammatory response in exercising mice: From central to peripheral. Eur J Pharmacol 2022; 917:174758. [PMID: 35026191 DOI: 10.1016/j.ejphar.2022.174758] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/31/2022]
Abstract
Macamides are the major and unique bioactive compounds of Lepidium meyenii (Walp.) or Maca. N-benzyl-(9Z, 12Z)-octadecadienamide (N-benzyl-linoleamide) is one of the most biologically active macamides with various pharmacological activities - anti-fatigue, neuroprotective, antioxidant, anti-tumoral activities, anti-inflammatory, and analgesic. In this study, the anti-fatigue properties of N-benzyl-(9Z, 12Z)-octadecadienamide were further evaluated by a weight-loaded forced swimming test. Results indicated N-benzyl-(9Z, 12Z)-octadecadienamide supplementation increased the forelimb grip strength of mice and exercising time remaining on the Rota-rod test. Furthermore, significant decreases in pro-inflammatory factors and reactive oxygen species (ROS) contents were observed in mice receiving N-benzyl-(9Z, 12Z)-octadecadienamide treatment after a 30 min swimming test, which was equivalent to that of caffeine. Histological analysis also indicated that N-benzyl-(9Z, 12Z)-octadecadienamide attenuated damage to the liver in mice by up-regulating the expression of heme oxygenase-1 (HO-1) and inhibiting the expression of Interleukin (IL)-1β during exercise. Pearson correlation analysis suggested peripheral fatigue indexes, including energy sources, metabolites were significantly correlated with inflammatory factors and ROS levels. Likewise, central fatigue parameters are also associated, including hippocampal inflammatory response and hypothalamic neurotransmitters. Hence, macamides can be considered to have great potential as a natural drug with high efficiency and low side effects for fatigue management.
Collapse
Affiliation(s)
- Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Ruoyong Wang
- Air Force Medical Center, Beijing, 100142, China
| | - Hanyi Hua
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yuliang Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yahui Guo
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Peng Du
- Air Force Medical Center, Beijing, 100142, China.
| |
Collapse
|
16
|
Yan K, Gao H, Liu X, Zhao Z, Gao B, Zhang L. Establishment and identification of an animal model of long-term exercise-induced fatigue. Front Endocrinol (Lausanne) 2022; 13:915937. [PMID: 36093084 PMCID: PMC9459130 DOI: 10.3389/fendo.2022.915937] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022] Open
Abstract
In competitive sports, the training load is close to the human physiological limit, which will inevitably lead to exercise-induced fatigue. If fatigue cannot be recovered in time, it will eventually lead to excessive training and affect sport performance. Therefore, fatigue has become an important part of the physical function assessment for athletes. This paper will review animal models of long-term exercise-induced fatigue, modeling schemes of mice under treadmill and swimming training, phenotypes of long-term exercise-induced fatigue (e.g., nervous system damage, myocardial cell damage, bone mineral density changes, and skeletal muscle damage), and fatigue indicators. The relationship between physiological indicators and biomarkers and long-term exercise-induced fatigue is analyzed to promote exercise-induced fatigue monitoring. This paper attempts to provide a reference for the selection of animal models of long-term exercise-induced fatigue and provide a new theoretical basis for medical supervision and recovery of exercise-induced fatigue.
Collapse
Affiliation(s)
- Kai Yan
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Haoyang Gao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Xiaohua Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Zhonghan Zhao
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Institute of Orthopaedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
- *Correspondence: Lingli Zhang, ; Bo Gao,
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
- *Correspondence: Lingli Zhang, ; Bo Gao,
| |
Collapse
|
17
|
Wu T, Li S, Huang Y, He Z, Zheng Y, Stalin A, Shao Q, Lin D. Structure and pharmacological activities of polysaccharides from Anoectochilus roxburghii (Wall.) Lindl. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
18
|
Miao L, Zhao T, Gao Y, Jing L, Huang Q, Ma H. Protective effects of 7-hydroxyethyl chrysin on rats with exercise-induced fatigue in hypobaric hypoxia environment. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:575-581. [PMID: 34986529 PMCID: PMC8732255 DOI: 10.3724/zdxbyxb-2021-0319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/25/2021] [Indexed: 11/25/2022]
Abstract
: To investigate the protective effect of 7-hydroxyethyl chrysin (7-HEC) on rats with exercise-induced fatigue in hypobaric hypoxic condition.Forty healthy male Wistar rats were randomly divided into four groups with 10 rats in each group: control group, model group, chrysin group and 7-HEC group. The rats in control group were raised at local altitude but other three groups were raised in a simulating altitude of for hypobaric hypoxia treatment. The chrysin group and 7-HEC group were given chrysin or 7-HEC by gavage for respectively; while the control group and model group were given the same amount of sterilized water. The weight-bearing swimming tests were performed 3 d later, and the weight-bearing swimming time was documented. After rats were sacrificed, the liver and skeletal muscle tissue samples were taken for pathological examination and determination of lactate, malondialdehyde (MDA), total superoxide dismutase (T-SOD) and glycogen levels. Blood urea nitrogen was also determined. Compared with the model group, weight-bearing swimming times were significantly prolonged in 7-HEC group [ vs. (4.04±1.30) min, <0.01]; pathological changes in liver and skeletal muscle tissue were attenuated; generation rate of blood urea nitrogen vs. 0.60) mmol·L·min, <0.05], lactate [liver: (0.14±0.05) vs. (0.10±0.03) mg·g·min, skeletal muscle: vs. (0.18±] and MDA [liver: (0.48) vs. (0.78±0.28) nmol·mg·min, skeletal muscle: (0.87±0.19) vs. (0.63±0.11) nmol·mg·min] were significantly reduced (all < 0.05); glycogen content [liver: (15.16±2.69) vs. skeletal muscle: (1.46±0.49) vs.0.48) mg/g] and T-SOD [liver: (1.87±0.01) vs. (2.68±0.12) U/mL, skeletal muscle: 0.42) vs. 0.96) U/mL] were significantly improved (all <0.05). 7-HEC has significant protective effect on the rats with exercise-induced fatigue in hypobaric hypoxia condition.
Collapse
Affiliation(s)
- Luwei Miao
- 3. Medical Support Center, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Tong Zhao
- 3. Medical Support Center, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Yingchun Gao
- 3. Medical Support Center, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Linlin Jing
- 3. Medical Support Center, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Qiong Huang
- 3. Medical Support Center, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| | - Huiping Ma
- 3. Medical Support Center, the 940th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou 730050, China
| |
Collapse
|
19
|
Zhao W, Zhang W, Liu L, Cheng Y, Guo Y, Yao W, Qian H. Fractionation, characterization and anti-fatigue activity of polysaccharides from Brassica rapa L. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Zhu H, Xu W, Wang N, Jiang W, Cheng Y, Guo Y, Yao W, Hu B, Du P, Qian H. Anti-fatigue effect of Lepidium meyenii Walp. (Maca) on preventing mitochondria-mediated muscle damage and oxidative stress in vivo and vitro. Food Funct 2021; 12:3132-3141. [PMID: 33729250 DOI: 10.1039/d1fo00383f] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maca (Lepidium meyenii Walp.) has emerged as a popular functional plant food due to its various pharmacological properties, including anti-oxidation, anti-inflammation and anti-fatigue activity. In this study, we investigated the role of Maca aqueous extract (ME) on muscle during exercise-induced fatigue both in vivo and in vitro. As a result, ME significantly enhanced mouse leg grip-strength and increased exercise endurance in the rota-rod test. ME could clear the accumulation of metabolites - blood lactic acid (BLA), blood urea nitrogen (BUN) and reactive oxygen species (ROS) levels after weight-loaded forced swimming. Focusing on muscle, we found that the administration of ME strengthened mouse muscle structures so that exercise-induced metabolic stress was alleviated by upregulating NAD+/NADH. Furthermore, ME inhibited the reduction of the viability and accumulation of ROS by treatment with H2O2 in C2C12 skeletal muscle cells. ME-induced activation of energy metabolism in skeletal muscle might up-regulate mitochondrial biogenesis and function, thereby protecting against oxidative stress-induced damage. We concluded that the effects of Maca played a crucial role in the regulation of exercise-induced fatigue in mouse muscle, which could be expected to serve as a functional food supplement for improving exercise performance and alleviating physical fatigue.
Collapse
Affiliation(s)
- Hongkang Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|