1
|
Smejkal J, Aubrecht P, Semerádtová A, Štofik M, Liegertová M, Malý J. Immunocapturing rare cells from blood: A simple and robust microsystem approach. Biosens Bioelectron 2023; 227:115155. [PMID: 36821992 DOI: 10.1016/j.bios.2023.115155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
Cell immunocapture microsystems are a fast-emerging field with several potential medical diagnostic applications. Isolation and quantification of circulating rare cells (CRCs) show great importance in the early stages of disease diagnostics and prognostics. Here, we present a simple and robust stop-flow microsystem (fabricated by a combination of glass microblasting and 3D printing) based on a planar antibody-coated surface that is effective in the immunocapture of the model as well as naturally occurring rare cells. A chip with a planar immunocapture channel working in the so-called stop-flow dynamic regime was designed to enable monitoring the efficiency of the cell capture by fluorescence microscopy. Up to 90% immunocapture efficiency of MCF-7 cells spiked into whole blood on CD326 antibody-coated planar surfaces was achieved. We discuss the role of the planar surface modifications, the influence of the set stop-flow dynamic conditions, and medium complexity on the efficiency of cell immunocapture. The presented results could be further employed in the design of microsystems for cell-size-independent isolation and identification of rare cells from blood.
Collapse
Affiliation(s)
- Jiří Smejkal
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic.
| | - Petr Aubrecht
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| | - Alena Semerádtová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| | - Marcel Štofik
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| | - Michaela Liegertová
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| | - Jan Malý
- Centre for Nanomaterials and Biotechnology, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, 400 96, Ústí nad Labem, Czech Republic
| |
Collapse
|
2
|
García-Hernández LA, Martínez-Martínez E, Pazos-Solís D, Aguado-Preciado J, Dutt A, Chávez-Ramírez AU, Korgel B, Sharma A, Oza G. Optical Detection of Cancer Cells Using Lab-on-a-Chip. BIOSENSORS 2023; 13:bios13040439. [PMID: 37185514 PMCID: PMC10136345 DOI: 10.3390/bios13040439] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
The global need for accurate and efficient cancer cell detection in biomedicine and clinical diagnosis has driven extensive research and technological development in the field. Precision, high-throughput, non-invasive separation, detection, and classification of individual cells are critical requirements for successful technology. Lab-on-a-chip devices offer enormous potential for solving biological and medical problems and have become a priority research area for microanalysis and manipulating cells. This paper reviews recent developments in the detection of cancer cells using the microfluidics-based lab-on-a-chip method, focusing on describing and explaining techniques that use optical phenomena and a plethora of probes for sensing, amplification, and immobilization. The paper describes how optics are applied in each experimental method, highlighting their advantages and disadvantages. The discussion includes a summary of current challenges and prospects for cancer diagnosis.
Collapse
Affiliation(s)
- Luis Abraham García-Hernández
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Pedro Escobedo, Querétaro C.P. 76703, Mexico
| | | | - Denni Pazos-Solís
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Querétaro C.P. 76130, Mexico
| | - Javier Aguado-Preciado
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Querétaro C.P. 76130, Mexico
| | - Ateet Dutt
- Instituto de Investigaciones en Materiales, Circuito Exterior S/N Ciudad Universitaria, Mexico City C.P. 04510, Mexico
| | - Abraham Ulises Chávez-Ramírez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Pedro Escobedo, Querétaro C.P. 76703, Mexico
| | - Brian Korgel
- McKetta Department of Chemical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX 78712-1062, USA
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Querétaro C.P. 76130, Mexico
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro, Pedro Escobedo, Querétaro C.P. 76703, Mexico
| |
Collapse
|
3
|
Guo C, Jiang S, Yang L, Song P, Pirhanov A, Wang R, Wang T, Shao X, Wu Q, Cho YK, Zheng G. Depth-multiplexed ptychographic microscopy for high-throughput imaging of stacked bio-specimens on a chip. Biosens Bioelectron 2023; 224:115049. [PMID: 36623342 DOI: 10.1016/j.bios.2022.115049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/15/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023]
Abstract
Imaging a large number of bio-specimens at high speed is essential for many biomedical applications. The common strategy is to place specimens at different lateral positions and image them sequentially. Here we report a new on-chip imaging strategy, termed depth-multiplexed ptychographic microscopy (DPM), for parallel imaging and sensing at high speed. Different from the common strategy, DPM stacks multiple specimens in the axial direction and images the entire z-stack all at once. In our prototype platform, we modify a low-cost car mirror for programmable steering of the incident laser beam. A blood-coated image sensor is then placed underneath the stacked sample for acquiring the resulting diffraction patterns. With the captured images, we perform blind recovery of the incident beam angle and model different layers of the stacked sample as different coded surfaces for object reconstruction. For in vitro experiment, we demonstrate time-lapse cell culture monitoring by imaging 3 stacked microfluidic channels on the coded sensor. For high-throughput cytometric analysis, we image 5 stacked brain sections with a 205-mm2 field of view in ∼50 s. Cytometric analysis is also performed to quantify the cellular proliferation biomarkers on the slides. The DPM approach adds a new degree of freedom for data multiplexing in microscopy, enabling parallel imaging of multiple specimens using a single detector. The demonstrated 6-mm depth of field is among the longest ones in microscopy imaging. The novel depth-multiplexed configuration also complements the miniaturization provided by microfluidics devices, offering a solution for on-chip sensing and imaging with efficient sample handling.
Collapse
Affiliation(s)
- Chengfei Guo
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, China; Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Shaowei Jiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Liming Yang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Pengming Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Azady Pirhanov
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ruihai Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Tianbo Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Xiaopeng Shao
- Hangzhou Institute of Technology, Xidian University, Hangzhou, 311231, China
| | - Qian Wu
- Department of Pathology and Laboratory Medicine, University of Connecticut Health Centre, Farmington, CT, 06030, USA
| | - Yong Ku Cho
- Department of Chemical & Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
4
|
Recent progress in microfluidic biosensors with different driving forces. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Jiang S, Guo C, Bian Z, Wang R, Zhu J, Song P, Hu P, Hu D, Zhang Z, Hoshino K, Feng B, Zheng G. Ptychographic sensor for large-scale lensless microbial monitoring with high spatiotemporal resolution. Biosens Bioelectron 2022; 196:113699. [PMID: 34653716 DOI: 10.1016/j.bios.2021.113699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 01/19/2023]
Abstract
Traditional microbial detection methods often rely on the overall property of microbial cultures and cannot resolve individual growth event at high spatiotemporal resolution. As a result, they require bacteria to grow to confluence and then interpret the results. Here, we demonstrate the application of an integrated ptychographic sensor for lensless cytometric analysis of microbial cultures over a large scale and with high spatiotemporal resolution. The reported device can be placed within a regular incubator or used as a standalone incubating unit for long-term microbial monitoring. For longitudinal study where massive data are acquired at sequential time points, we report a new temporal-similarity constraint to increase the temporal resolution of ptychographic reconstruction by 7-fold. With this strategy, the reported device achieves a centimeter-scale field of view, a half-pitch spatial resolution of 488 nm, and a temporal resolution of 15-s intervals. For the first time, we report the direct observation of bacterial growth in a 15-s interval by tracking the phase wraps of the recovered images, with high phase sensitivity like that in interferometric measurements. We also characterize cell growth via longitudinal dry mass measurement and perform rapid bacterial detection at low concentrations. For drug-screening application, we demonstrate proof-of-concept antibiotic susceptibility testing and perform single-cell analysis of antibiotic-induced filamentation. The combination of high phase sensitivity, high spatiotemporal resolution, and large field of view is unique among existing microscopy techniques. As a quantitative and miniaturized platform, it can improve studies with microorganisms and other biospecimens at resource-limited settings.
Collapse
Affiliation(s)
- Shaowei Jiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Chengfei Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| | - Zichao Bian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ruihai Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Jiakai Zhu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Pengming Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Patrick Hu
- Department of Computer Science, University of California Irvine, Irvine, CA, 92697, USA
| | - Derek Hu
- Amador Valley High School, Pleasanton, CA, 94566, USA
| | - Zibang Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
6
|
Jiang S, Zhu J, Song P, Guo C, Bian Z, Wang R, Huang Y, Wang S, Zhang H, Zheng G. Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation. LAB ON A CHIP 2020; 20:1058-1065. [PMID: 32073018 DOI: 10.1039/c9lc01027k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a novel lensless on-chip microscopy platform based on near-field blind ptychographic modulation. In this platform, we place a thin diffuser in between the object and the image sensor for light wave modulation. By blindly scanning the unknown diffuser to different x-y positions, we acquire a sequence of modulated intensity images for quantitative object recovery. Different from previous ptychographic implementations, we employ a unit magnification configuration with a Fresnel number of ∼50 000, which is orders of magnitude higher than those of previous ptychographic setups. The unit magnification configuration allows us to have the entire sensor area, 6.4 mm by 4.6 mm, as the imaging field of view. The ultra-high Fresnel number enables us to directly recover the positional shift of the diffuser in the phase retrieval process, addressing the positioning accuracy issue plaguing regular ptychographic experiments. In our implementation, we use a low-cost, DIY scanning stage to perform blind diffuser modulation. Precise mechanical scanning that is critical in conventional ptychography experiments is no longer needed in our setup. We further employ an up-sampling phase retrieval scheme to bypass the resolution limit set by the imager pixel size and demonstrate a half-pitch resolution of 0.78 μm. We validate the imaging performance via in vitro cell cultures, transparent and stained tissue sections, and a thick biological sample. We show that the recovered quantitative phase map can be used to perform effective cell segmentation of a dense yeast culture. We also demonstrate 3D digital refocusing of the thick biological sample based on the recovered wavefront. The reported platform provides a cost-effective and turnkey solution for large field-of-view, high-resolution, and quantitative on-chip microscopy. It is adaptable for a wide range of point-of-care-, global-health-, and telemedicine-related applications.
Collapse
Affiliation(s)
- Shaowei Jiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Jiakai Zhu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Pengming Song
- Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Chengfei Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Zichao Bian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Ruihai Wang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Yikun Huang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Shiyao Wang
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - He Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Guoan Zheng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA. and Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|