1
|
Jang W, Song EL, Mun SJ, Bong KW. Efficient isolation of encoded microparticles in a degassed micromold for highly sensitive and multiplex immunoassay with signal amplification. Biosens Bioelectron 2024; 261:116465. [PMID: 38850735 DOI: 10.1016/j.bios.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Multiplex detection of low-abundance protein biomarkers in biofluids can contribute to diverse biomedical fields such as early diagnosis and precision medicine. However, conventional techniques such as digital ELISA, microarray, and hydrogel-based assay still face limitations in terms of efficient protein detection due to issues with multiplexing capability, sensitivity, or complicated assay procedures. In this study, we present the degassed micromold-based particle isolation technique for highly sensitive and multiplex immunoassay with enzymatic signal amplification. Using degassing treatment of nanoporous polydimethylsiloxane (PDMS) micromold, the encoded particles are isolated in the mold within 5 min absorbing trapped air bubbles into the mold by air suction capability. Through 10 min of signal amplification in the isolated spaces by fluorogenic substrate and horseradish peroxidase labeled in the particle, the assay signal is amplified with one order of magnitude compared to that of the standard hydrogel-based assay. Using the signal amplification assay, vascular endothelial growth factor (VEGF) and chorionic gonadotropin beta (CG beta), the preeclampsia-related protein biomarkers, are quantitatively detected with a limit of detection (LoD) of 249 fg/mL and 476 fg/mL in phosphate buffer saline. The multiplex immunoassay is conducted to validate negligible non-specific detection signals and robust recovery rates in the multiplex assay. Finally, the VEGF and CG beta in real urine samples are simultaneously and quantitatively detected by the developed assay. Given the high sensitivity, multiplexing capability, and process simplicity, the presented particle isolation-based signal amplification assay holds significant potential in biomedical and proteomic fields.
Collapse
Affiliation(s)
- Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - E Loomee Song
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Mun SJ, Jang W, Choi JH, Lim YJ, Bong KW. Air-through-precursor suction-augmented replica molding for fabrication of anisotropic microparticles in gas-impermeable molds. RSC Adv 2024; 14:25190-25197. [PMID: 39139226 PMCID: PMC11317880 DOI: 10.1039/d4ra04719b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024] Open
Abstract
Replica molding (REM) is a powerful technique for fabricating anisotropic microparticles. Current REM methods rely on the use of gas-permeable molds for defect-free castings and facile particle recovery. However, they often encounter limitations on either technical accessibility or producible particle diversity. While the use of gas-impermeable molds presents a promising solution to these challenges, particle production within such molds necessitates addressing two critical issues: precursor loading and particle recovery. This study introduces a REM methodology specifically tailored to enable the production of anisotropic microparticles within gas-impermeable molds. To address the issue of precursor loading, our approach incorporates the air-through-precursor suction method, employing a degassed polydimethylsiloxane block to effectively eliminate air bubbles trapped in microwells. Additionally, fluorosilane pretreatment of the mold surface, along with the polyvinyl alcohol film formation, significantly enhances particle recovery up to 249-fold while ensuring particle homogeneity. This methodology demonstrates high adaptability to various gas-impermeable molds and curing techniques. The practical feasibility is illustrated through the successful production of functional composite microparticles that can be effectively utilized for oxygen sensing and self-assembly, challenging in conventional REM.
Collapse
Affiliation(s)
- Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 Republic of Korea
| | - Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 Republic of Korea
| | - Jun Hee Choi
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 Republic of Korea
| | - Yong Jun Lim
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
3
|
Xuan L, Hou Y, Liang L, Wu J, Fan K, Lian L, Qiu J, Miao Y, Ravanbakhsh H, Xu M, Tang G. Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine. NANO-MICRO LETTERS 2024; 16:218. [PMID: 38884868 PMCID: PMC11183039 DOI: 10.1007/s40820-024-01421-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 06/18/2024]
Abstract
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
Collapse
Affiliation(s)
- Leyan Xuan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingying Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Lu Liang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Jialin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Kai Fan
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China
| | - Liming Lian
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jianhua Qiu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yingling Miao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hossein Ravanbakhsh
- Department of Biomedical Engineering, The University of Akron, Akron, OH, 44325, USA.
| | - Mingen Xu
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, People's Republic of China.
| | - Guosheng Tang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
4
|
Zhang H, Chen J, Hu X, Bai J, Yin T. Adjustable extracellular matrix rigidity tumor model for studying stiffness dependent pancreatic ductal adenocarcinomas progression and tumor immunosuppression. Bioeng Transl Med 2023; 8:e10518. [PMID: 37206224 PMCID: PMC10189475 DOI: 10.1002/btm2.10518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/10/2023] [Accepted: 03/18/2023] [Indexed: 05/21/2023] Open
Abstract
Pancreatic ductal adenocarcinomas (PDAC) is one of the stiffest malignancies with strong solid stresses. Increasing stiffness could alter cellular behavior and trigger internal signaling pathways and is strongly associated with a poor prognosis in PDAC. So far, there has been no report on of an experimental model that can rapidly construct and stably maintain a stiffness gradient dimension in both vitro and in vivo. In this study, a gelatin methacryloyl (GelMA)-based hydrogel was designed for in vitro and in vivo PDAC experiments. The GelMA-based hydrogel has porous, adjustable mechanical properties and excellent in vitro and in vivo biocompatibility. The GelMA-based in vitro 3D culture method can effectively form a gradient and stable extracellular matrix stiffness, affecting cell morphology, cytoskeleton remodeling, and malignant biological behaviors such as proliferation and metastasis. This model is suitable for in vivo studies with long-term maintenance of matrix stiffness and no significant toxicity. High matrix stiffness can significantly promote PDAC progression and tumor immunosuppression. This novel adaptive extracellular matrix rigidity tumor model is an excellent candidate for further development as an in vitro and in vivo biomechanical study model of PDAC or other tumors with strong solid stresses.
Collapse
Affiliation(s)
- Haoxiang Zhang
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jiaoshun Chen
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xiaoqing Hu
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Jianwei Bai
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Tao Yin
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Sino‐German Laboratory of Personalized Medicine for Pancreatic Cancer, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
5
|
Du L, Li Y, Zhang X, Zhou Z, Wang Y, Jing D, Zhou J. One-Step Fabrication of Droplet Arrays Using a Biomimetic Structural Chip. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17413-17420. [PMID: 36972187 DOI: 10.1021/acsami.3c01654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the field of one-step efficient preparation of dewetting droplet arrays, the process is hampered by the requirement for low chemical wettability of solid surfaces, which restricts the complete transition of wetting state and its broad prospects in biological applications. Inspired by the physical structure of the lotus leaf, enabling it to promote the change of the infiltration state of an aqueous solution on the surface, we developed a method of one-step fabrication of droplet arrays on the biomimetic structural chip designed in the present work. This greatly reduces the need for chemical modification techniques to achieve low wettability and reduces the reliance on complex and sophisticated surface preparation techniques, thus improving the fabrication efficiency of droplet arrays fully generated on a chip by one-step operation without the need for extra liquid phase or the control of harsh barometric pressure. We also studied the influence of dimensions of the biomimetic structure and the preparation process parameters such as number of smears and speed of smearing on the preparation rate and uniformity of the droplet arrays. The amplification of templating DNA molecules in the droplet arrays prepared in a one-step fabrication way is also performed to verify its application potential for DNA molecular diagnosis.
Collapse
Affiliation(s)
- Lin Du
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuxin Li
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinlian Zhang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai 200433, China
| | - Zijian Zhou
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Wang
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Dalei Jing
- School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jia Zhou
- State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Jang W, Mun SJ, Kim SY, Bong KW. Controlled growth factor delivery via a degradable poly(lactic acid) hydrogel microcarrier synthesized using degassed micromolding lithography. Colloids Surf B Biointerfaces 2023; 222:113088. [PMID: 36577342 DOI: 10.1016/j.colsurfb.2022.113088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
Controlled and targeted delivery of growth factors to biological environments is important for tissue regeneration. Polylactic acid (PLA) hydrogel microparticles are attractive carriers for the delivery of therapeutic cargoes based on their superior biocompatibility and biodegradability, uniform encapsulation of cargoes, and non-requirement of organic solvents during particle synthesis. In this study, we newly present controlled growth factor delivery utilizing PLA-based hydrogel microcarriers synthesized via degassed micromolding lithography (DML). Based on the direct gelation procedure from the single-phase aqueous precursor in DML, bovine serum albumin, a model protein of growth factor, and fibroblast growth factor were encapsulated into microparticles with uniform distribution. In addition, by tuning the monomer concentration and adding a hydrolytically stable crosslinker, the release of encapsulated cargoes was efficiently controlled and extended to 2 weeks. Finally, we demonstrated the biological activity of encapsulated FGF-2 in PLA-based microparticles using a fibroblast proliferation assay.
Collapse
Affiliation(s)
- Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soung-Yon Kim
- Department of Orthopaedic Surgery, Kangwon National University Hospital, Baengnyeong-ro 156, Chuncheon-si, Gangwon-do 24289, Republic of Korea.
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
Mun SJ, Jang W, Eom JY, Kim HU, Bong KW. High-Resolution Surface Replication of Living Organisms using Air-Through-Precursor Suction-Augmented Replica Molding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204754. [PMID: 36284480 DOI: 10.1002/smll.202204754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Replica molding is widely used to reproduce the surface microstructures that provide living organisms with distinct and useful functions. However, the existing methods are limited by the low resolution resulting from the air trapped in the structures during precursor solution loading. This study investigated replica molding with an air-through-precursor suction (APS) process, which used a degassed polydimethylsiloxane substrate to remove the trapped air through the precursor solution. The liquid loading times are characterized using a model template, and air suction that is up to 36 times faster can be achieved using the APS process relative to a conventional method. Using APS replica molding, biocompatible replicates from human fingerprints and gecko skin are fabricated using only a 3 min precursor solution loading step. Owing to the enhanced and reproducible resolution from APS replica molding, for the first time, the structural changes in the foot of a living gecko at the microscale can be observed when standing on a horizontal or vertical surface.
Collapse
Affiliation(s)
- Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Yeon Eom
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
8
|
Sierra-Agudelo J, Rodriguez-Trujillo R, Samitier J. Microfluidics for the Isolation and Detection of Circulating Tumor Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:389-412. [PMID: 35761001 DOI: 10.1007/978-3-031-04039-9_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nowadays, liquid biopsy represents one of the most promising techniques for early diagnosis, monitoring, and therapy screening of cancer. This novel methodology includes, among other techniques, the isolation, capture, and analysis of circulating tumor cells (CTCs). Nonetheless, the identification of CTC from whole blood is challenging due to their extremely low concentration (1-100 per ml of whole blood), and traditional methods result insufficient in terms of purity, recovery, throughput and/or viability of the processed sample. In this context, the development of microfluidic devices for detecting and isolating CTCs offers a wide range of new opportunities due to their excellent properties for cell manipulation and the advantages to integrate and bring different laboratory processes into the microscale improving the sensitivity, portability, reducing cost and time. This chapter explores current and recent microfluidic approaches that have been developed for the analysis and detection of CTCs, which involve cell capture methods based on affinity binding and label-free methods and detection based on electrical, chemical, and optical sensors. All the exposed technologies seek to overcome the limitations of commercial systems for the analysis and isolation of CTCs, as well as to provide extended analysis that will allow the development of novel and more efficient diagnostic tools.
Collapse
Affiliation(s)
- Jessica Sierra-Agudelo
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Romen Rodriguez-Trujillo
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain. .,Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain.
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
9
|
Xie M, Shi Y, Zhang C, Ge M, Zhang J, Chen Z, Fu J, Xie Z, He Y. In situ 3D bioprinting with bioconcrete bioink. Nat Commun 2022; 13:3597. [PMID: 35739106 PMCID: PMC9225998 DOI: 10.1038/s41467-022-30997-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/20/2022] [Indexed: 01/20/2023] Open
Abstract
In-situ bioprinting is attractive for directly depositing the therapy bioink at the defective organs to repair them, especially for occupations such as soldiers, athletes, and drivers who can be injured in emergency. However, traditional bioink displays obvious limitations in its complex operation environments. Here, we design a bioconcrete bioink with electrosprayed cell-laden microgels as the aggregate and gelatin methacryloyl (GelMA) precursor solution as the cement. Promising printability is guaranteed with a wide temperature range benefiting from robust rheological properties of photocrosslinked microgel aggregate and fluidity of GelMA cement. Composite components simultaneously self-adapt to biocompatibility and different tissue mechanical microenvironment. Strong binding on tissue-hydrogel interface is achieved by hydrogen bonds and friction when the cement is photocrosslinked. This bioink owns good portability and can be easily prepared in urgent accidents. Meanwhile, microgels can be cultured to mini tissues and then mixed as bioink aggregates, indicating our bioconcrete can be functionalized faster than normal bioinks. The cranial defects repair results verify the superiority of this bioink and its potential in clinical settings required in in-situ treatment.
Collapse
Affiliation(s)
- Mingjun Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Yang Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 310006, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, 310006, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 310006, Hangzhou, China
| | - Chun Zhang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 310006, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, 310006, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 310006, Hangzhou, China
| | - Mingjie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 310006, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, 310006, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 310006, Hangzhou, China
| | - Jingbo Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Zichen Chen
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Zhijian Xie
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, 310006, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Oral Diseases, 310006, Hangzhou, China
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, 310006, Hangzhou, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China.
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, 310027, Hangzhou, China.
- Cancer Center, Zhejiang University, 310058, Hangzhou, Zhejiang, China.
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, 450002, Zhengzhou, China.
| |
Collapse
|
10
|
Jang W, Kim DY, Mun SJ, Choi JH, Roh YH, Bong KW. Direct functionalization of cell‐adhesion promoters to hydrogel microparticles synthesized by stop‐flow lithography. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Wookyoung Jang
- Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea
| | - Do Yeon Kim
- Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea
| | - Jun Hee Choi
- Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering Korea University Seoul Republic of Korea
| |
Collapse
|
11
|
Nadine S, Chung A, Diltemiz SE, Yasuda B, Lee C, Hosseini V, Karamikamkar S, de Barros NR, Mandal K, Advani S, Zamanian BB, Mecwan M, Zhu Y, Mofidfar M, Zare MR, Mano J, Dokmeci MR, Alambeigi F, Ahadian S. Advances in microfabrication technologies in tissue engineering and regenerative medicine. Artif Organs 2022; 46:E211-E243. [PMID: 35349178 DOI: 10.1111/aor.14232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/02/2022] [Accepted: 02/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND Tissue engineering provides various strategies to fabricate an appropriate microenvironment to support the repair and regeneration of lost or damaged tissues. In this matter, several technologies have been implemented to construct close-to-native three-dimensional structures at numerous physiological scales, which are essential to confer the functional characteristics of living tissues. METHODS In this article, we review a variety of microfabrication technologies that are currently utilized for several tissue engineering applications, such as soft lithography, microneedles, templated and self-assembly of microstructures, microfluidics, fiber spinning, and bioprinting. RESULTS These technologies have considerably helped us to precisely manipulate cells or cellular constructs for the fabrication of biomimetic tissues and organs. Although currently available tissues still lack some crucial functionalities, including vascular networks, innervation, and lymphatic system, microfabrication strategies are being proposed to overcome these issues. Moreover, the microfabrication techniques that have progressed to the preclinical stage are also discussed. CONCLUSIONS This article aims to highlight the advantages and drawbacks of each technique and areas of further research for a more comprehensive and evolving understanding of microfabrication techniques in terms of tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Sara Nadine
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Ada Chung
- Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | | | - Brooke Yasuda
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Psychology, University of California-Los Angeles, Los Angeles, California, USA
| | - Charles Lee
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA.,Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA.,Station 1, Lawrence, Massachusetts, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Solmaz Karamikamkar
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Shailesh Advani
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | | | - Marvin Mecwan
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Palo Alto, California, USA
| | | | - João Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Mehmet Remzi Dokmeci
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| | - Farshid Alambeigi
- Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation (TIBI), Los Angeles, California, USA
| |
Collapse
|
12
|
Keller S, Dekkers R, Hu GX, Tollemeto M, Morosini M, Keskin A, Wilson DA. A simple microfluidic tool to design anisotropic microgels. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.105012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Highly Magnetized Encoded Hydrogel Microparticles with Enhanced Rinsing Capabilities for Efficient microRNA Detection. Biomedicines 2021; 9:biomedicines9070848. [PMID: 34356912 PMCID: PMC8301431 DOI: 10.3390/biomedicines9070848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/16/2022] Open
Abstract
Encoded hydrogel microparticles mounting DNA probes are powerful tools for high-performance microRNA (miRNA) detection in terms of sensitivity, specificity, and multiplex detection capability. However, several particle rinsing steps in the assay procedure present challenges for rapid and efficient detection. To overcome this limitation, we encapsulated dense magnetic nanoparticles to reduce the rinsing steps and duration via magnetic separation. A large number of magnetic nanoparticles were encapsulated into hydrogel microparticles based on a discontinuous dewetting technique combined with degassed micromolding lithography. In addition, we attached DNA probes targeting three types of miRNAs related to preeclampsia to magnetically encoded hydrogel microparticles by post-synthesis conjugation and achieved sensitivity comparable to that of conventional nonmagnetic encoded hydrogel microparticles. To demonstrate the multiplex capability of magnetically encoded hydrogel microparticles while maintaining the advantages of the simplified rinsing process when addressing multiple samples, we conducted a triplex detection of preeclampsia-related miRNAs. In conclusion, the introduction of magnetically encoded hydrogel microparticles not only allowed efficient miRNA detection but also provided comparable sensitivity and multiplexed detectability to conventional nonmagnetic encoded hydrogel microparticles.
Collapse
|
14
|
Song R, Cho S, Shin S, Kim H, Lee J. From shaping to functionalization of micro-droplets and particles. NANOSCALE ADVANCES 2021; 3:3395-3416. [PMID: 36133725 PMCID: PMC9419121 DOI: 10.1039/d1na00276g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/10/2021] [Indexed: 06/15/2023]
Abstract
The structure of microdroplet and microparticle is a critical factor in their functionality, which determines the distribution and sequence of physicochemical reactions. Therefore, the technology of precisely tailoring their shape is requisite for implementing the user demand functions in various applications. This review highlights various methodologies for droplet shaping, classified into passive and active approaches based on whether additional body forces are applied to droplets to manipulate their functions and fabricate them into microparticles. The passive approaches cover batch emulsification, solvent evaporation and diffusion, micromolding, and microfluidic methods. In active approaches, the external forces, such as electrical and magnetic fields or optical lithography, are applied to microdroplets. Special attention is also given to latest technologies using microdroplets and microparticles, especially in the fields of biological, optical, robotic, and environmental applications. Finally, this review aims to address the advantages and disadvantages of the introduced approaches and suggests the direction for further development in this field.
Collapse
Affiliation(s)
- Ryungeun Song
- School of Mechanical Engineering, Sungkyunkwan University Suwon 16419 Korea
| | - Seongsu Cho
- School of Mechanical Engineering, Sungkyunkwan University Suwon 16419 Korea
| | - Seonghun Shin
- School of Mechanical Engineering, Sungkyunkwan University Suwon 16419 Korea
| | - Hyejeong Kim
- School of Mechanical Engineering, Korea University Seoul 02841 Korea
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University Suwon 16419 Korea
- Institute of Quantum Biophysics, Sungkyunkwan University Suwon 16419 Korea
| |
Collapse
|
15
|
Kim HU, Roh YH, Mun SJ, Bong KW. Discontinuous Dewetting in a Degassed Mold for Fabrication of Homogeneous Polymeric Microparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:53318-53327. [PMID: 33196158 DOI: 10.1021/acsami.0c15944] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Discontinuous dewetting (DD) is an attractive technique that enables the production of large liquid arrays in microwells and is applicable to the synthesis of anisotropic microparticles with complex morphologies. However, such loading of liquids into microwells presents a significant challenge, as the liquids used in this technique should exhibit low mold surface wettability. This study introduces DD in a degassed mold (DM), a simple yet powerful technique that achieves uniform loading of microparticle precursors into large microwell arrays within 1 min. Using this technique, hydrogel microparticles are produced by different polymerization mechanisms with various shapes and sizes, ranging from a few micrometers to hundreds of micrometers. Hydrophobic oil microparticles are produced by the simple plasma treatment of the DM, and agarose microparticles encapsulating bovine serum albumin (in a well-dispersed state) are produced by submerging the DM in fluorinated oil. To demonstrate additional functionality of microparticles using this technique, high concentrations of magnetic nanoparticles are loaded into microparticles for particle-based immunoassays performed in a microwell plate, and the immunoassay performance is comparable to that of ELISA.
Collapse
Affiliation(s)
- Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
16
|
Mun SJ, Ko D, Kim HU, Han Y, Roh YH, Kim BG, Na HB, Bong KW. Photopolymerization-Based Synthesis of Uniform Magnetic Hydrogels and Colorimetric Glucose Detection. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4401. [PMID: 33023165 PMCID: PMC7579115 DOI: 10.3390/ma13194401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/03/2023]
Abstract
Magnetic hydrogels have been commonly used in biomedical applications. As magnetite nanoparticles (MNPs) exhibit peroxidase enzyme-like activity, magnetic hydrogels have been actively used as signal transducers for biomedical assays. Droplet microfluidics, which uses photoinitiated polymerization, is a preferred method for the synthesis of magnetic hydrogels. However, light absorption by MNPs makes it difficult to obtain fully polymerized and homogeneous magnetic hydrogels through photoinitiated polymerization. Several methods have been reported to address this issue, but few studies have focused on investigating the light absorption properties of photoinitiators. In this study, we developed a simple method for the synthesis of poly(ethylene glycol) (PEG)-based uniform magnetic hydrogels that exploits the high ultraviolet absorption of a photoinitiator. Additionally, we investigated this effect on shape deformation and structural uniformity of the synthesized magnetic hydrogels. Two different photoinitiators, Darocur 1173 and lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP), with significantly different UV absorption properties were evaluated based on the synthesis of magnetic hydrogels. The magnetic characteristics of the PEG-stabilized MNPs in hydrogels were investigated with a vibrating sample magnetometer. Finally, the colorimetric detection of hydrogen peroxide and glucose was conducted based on the enzyme-like property of MNPs and repeated several times to observe the catalytic activity of the magnetic hydrogels.
Collapse
Affiliation(s)
- Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.J.M.); (H.U.K.); (Y.H.R.)
| | - Donghyun Ko
- Department of Chemical Engineering, Myongji University, Yongin, Gyeonggi-do 17058, Korea; (D.K.); (Y.H.); (B.-G.K.)
| | - Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.J.M.); (H.U.K.); (Y.H.R.)
| | - Yujin Han
- Department of Chemical Engineering, Myongji University, Yongin, Gyeonggi-do 17058, Korea; (D.K.); (Y.H.); (B.-G.K.)
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.J.M.); (H.U.K.); (Y.H.R.)
| | - Bong-Geun Kim
- Department of Chemical Engineering, Myongji University, Yongin, Gyeonggi-do 17058, Korea; (D.K.); (Y.H.); (B.-G.K.)
| | - Hyon Bin Na
- Department of Chemical Engineering, Myongji University, Yongin, Gyeonggi-do 17058, Korea; (D.K.); (Y.H.); (B.-G.K.)
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (S.J.M.); (H.U.K.); (Y.H.R.)
| |
Collapse
|
17
|
Roh YH, Seo J, Kim JY, Kim HU, Mun SJ, Seo JH, Bong KW. Phosphorylcholine-based encoded hydrogel microparticles with enhanced fouling resistance for multiplex immunoassays. Analyst 2020; 145:5482-5490. [PMID: 32588844 DOI: 10.1039/d0an00808g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Due to the growing interest in multiplex protein detection, encoded hydrogel microparticles have received attention as a possible path to high performance multiplex immunoassays through a combination of high multiplexing capability and enhanced binding kinetics. However, their practical operation in real complex samples is still limited because polyethylene glycol, which is the main component of hydrogel particles, suffers from oxidative damage and relatively high fouling properties in biochemical solutions. Here, we introduce poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-based encoded hydrogel microparticles to perform fouling-resistant multiplex immunoassays, where the anti-fouling characteristics are attributed to the zwitterionic PMPC. By applying a newly developed molding lithography technique, viscous PMPCs with low reactivity were successfully incorporated into the hydrogel network while maintaining uniformity and rigidity for use in multiplex immunoassays. Non-specific protein adsorption on the PMPC particles was reduced by about 37.5% compared to that of conventional PEG particles, which leads to better assay sensitivity. We also validate the multiplex capability of the PMPC particles by performing multiplex detection of two target proteins. Furthermore, we verify that the PMPC particles have a 70% enhancement in anti-fouling characteristics compared to PEG particles in human platelet-rich plasma, potentiating a practical immunoassay platform for clinical diagnosis.
Collapse
Affiliation(s)
- Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
18
|
Lee NJ, Maeng S, Kim HU, Roh YH, Hwang C, Kim J, Hwang KT, Bong KW. Affinity-Enhanced CTC-Capturing Hydrogel Microparticles Fabricated by Degassed Mold Lithography. J Clin Med 2020; 9:E301. [PMID: 31973077 PMCID: PMC7073783 DOI: 10.3390/jcm9020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/12/2022] Open
Abstract
Technologies for the detection and isolation of circulating tumor cells (CTCs) are essential in liquid biopsy, a minimally invasive technique for early diagnosis and medical intervention in cancer patients. A promising method for CTC capture, using an affinity-based approach, is the use of functionalized hydrogel microparticles (MP), which have the advantages of water-like reactivity, biologically compatible materials, and synergy with various analysis platforms. In this paper, we demonstrate the feasibility of CTC capture by hydrogel particles synthesized using a novel method called degassed mold lithography (DML). This technique increases the porosity and functionality of the MPs for effective conjugation with antibodies. Qualitative fluorescence analysis demonstrates that DML produces superior uniformity, integrity, and functionality of the MPs, as compared to conventional stop flow lithography (SFL). Analysis of the fluorescence intensity from porosity-controlled MPs by each reaction step of antibody conjugation elucidates that more antibodies are loaded when the particles are more porous. The feasibility of selective cell capture is demonstrated using breast cancer cell lines. In conclusion, using DML for the synthesis of porous MPs offers a powerful method for improving the cell affinity of the antibody-conjugated MPs.
Collapse
Affiliation(s)
- Nak Jun Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (N.J.L.); (H.U.K.); (Y.H.R.); (C.H.)
| | - Sejung Maeng
- Department of Surgery, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Korea; (S.M.); (J.K.)
| | - Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (N.J.L.); (H.U.K.); (Y.H.R.); (C.H.)
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (N.J.L.); (H.U.K.); (Y.H.R.); (C.H.)
| | - Changhyun Hwang
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (N.J.L.); (H.U.K.); (Y.H.R.); (C.H.)
| | - Jongjin Kim
- Department of Surgery, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Korea; (S.M.); (J.K.)
| | - Ki-Tae Hwang
- Department of Surgery, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061, Korea; (S.M.); (J.K.)
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea; (N.J.L.); (H.U.K.); (Y.H.R.); (C.H.)
| |
Collapse
|