1
|
Camargo CP, Alapan Y, Muhuri AK, Lucas SN, Thomas SN. Single-cell adhesive profiling in an optofluidic device elucidates CD8 + T lymphocyte phenotypes in inflamed vasculature-like microenvironments. CELL REPORTS METHODS 2024; 4:100743. [PMID: 38554703 PMCID: PMC11046032 DOI: 10.1016/j.crmeth.2024.100743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/28/2023] [Accepted: 03/08/2024] [Indexed: 04/02/2024]
Abstract
Tissue infiltration by circulating leukocytes occurs via adhesive interactions with the local vasculature, but how the adhesive quality of circulating cells guides the homing of specific phenotypes to different vascular microenvironments remains undefined. We developed an optofluidic system enabling fluorescent labeling of photoactivatable cells based on their adhesive rolling velocity in an inflamed vasculature-mimicking microfluidic device under physiological fluid flow. In so doing, single-cell level multidimensional profiling of cellular characteristics could be characterized and related to the associated adhesive phenotype. When applied to CD8+ T cells, ligand/receptor expression profiles and subtypes associated with adhesion were revealed, providing insight into inflamed tissue infiltration capabilities of specific CD8+ T lymphocyte subsets and how local vascular microenvironmental features may regulate the quality of cellular infiltration. This methodology facilitates rapid screening of cell populations for enhanced homing capabilities under defined biochemical and biophysical microenvironments, relevant to leukocyte homing modulation in multiple pathologies.
Collapse
Affiliation(s)
- Camila P Camargo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Yunus Alapan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Abir K Muhuri
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA
| | - Samuel N Lucas
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta 30332, GA, USA
| | - Susan N Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332, GA, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332, GA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta 30332, GA, USA; Winship Cancer Institute, Emory University, Atlanta 30322, GA, USA.
| |
Collapse
|
2
|
Camargo CP, Muhuri AK, Alapan Y, Sestito LF, Khosla M, Manspeaker MP, Smith AS, Paulos CM, Thomas SN. A dhesion analysis via a tumor vasculature-like microfluidic device identifies CD8 + T cells with enhanced tumor homing to improve cell therapy. Cell Rep 2023; 42:112175. [PMID: 36848287 DOI: 10.1016/j.celrep.2023.112175] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
CD8+ T cell recruitment to the tumor microenvironment is critical for the success of adoptive cell therapy (ACT). Unfortunately, only a small fraction of transferred cells home to solid tumors. Adhesive ligand-receptor interactions have been implicated in CD8+ T cell homing; however, there is a lack of understanding of how CD8+ T cells interact with tumor vasculature-expressed adhesive ligands under the influence of hemodynamic flow. Here, the capacity of CD8+ T cells to home to melanomas is modeled ex vivo using an engineered microfluidic device that recapitulates the hemodynamic microenvironment of the tumor vasculature. Adoptively transferred CD8+ T cells with enhanced adhesion in flow in vitro and tumor homing in vivo improve tumor control by ACT in combination with immune checkpoint blockade. These results show that engineered microfluidic devices can model the microenvironment of the tumor vasculature to identify subsets of T cells with enhanced tumor infiltrating capabilities, a key limitation in ACT.
Collapse
Affiliation(s)
- Camila P Camargo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Abir K Muhuri
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yunus Alapan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lauren F Sestito
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Megha Khosla
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Margaret P Manspeaker
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Aubrey S Smith
- Winship Cancer Institute, Emory University, Atlanta, GA 30332, USA; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Susan N Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; Winship Cancer Institute, Emory University, Atlanta, GA 30332, USA.
| |
Collapse
|
3
|
Birmingham KG, O'Melia MJ, Bordy S, Reyes Aguilar D, El-Reyas B, Lesinski G, Thomas SN. Lymph Node Subcapsular Sinus Microenvironment-On-A-Chip Modeling Shear Flow Relevant to Lymphatic Metastasis and Immune Cell Homing. iScience 2020; 23:101751. [PMID: 33241198 PMCID: PMC7672279 DOI: 10.1016/j.isci.2020.101751] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
A lymph node sinus-on-a-chip adhesion microfluidic platform that recapitulates the hydrodynamic microenvironment of the lymph node subcapsular sinus was engineered. This device was used to interrogate the effects of lymph node remodeling on cellular adhesion in fluid flow relevant to lymphatic metastasis. Wall shear stress levels analytically estimated and modeled after quiescent and diseased/inflamed lymph nodes were experimentally recapitulated using a flow-based microfluidic perfusion system to assess the effects of physiological flow fields on human metastatic cancer cell adhesion. Results suggest that both altered fluid flow profiles and presentation of adhesive ligands, which are predicted to manifest within the lymph node subcapsular sinus as a result of inflammation-induced remodeling, and the presence of lymph-borne monocytic cells may synergistically contribute to the dynamic extent of cell adhesion in flow relevant to lymph node invasion by cancer and monocytic immune cells during lymphatic metastasis.
Collapse
Affiliation(s)
- Katherine G. Birmingham
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Meghan J. O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Samantha Bordy
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David Reyes Aguilar
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Bassel El-Reyas
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Gregory Lesinski
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Susan N. Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310 315 Ferst Drive NW, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Corresponding author
| |
Collapse
|