1
|
Sun G, Qu L, Azi F, Liu Y, Li J, Lv X, Du G, Chen J, Chen CH, Liu L. Recent progress in high-throughput droplet screening and sorting for bioanalysis. Biosens Bioelectron 2023; 225:115107. [PMID: 36731396 DOI: 10.1016/j.bios.2023.115107] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Owing to its ability to isolate single cells and perform high-throughput sorting, droplet sorting has been widely applied in several research fields. Compared with flow cytometry, droplet allows the encapsulation of single cells for cell secretion or lysate analysis. With the rapid development of this technology in the past decade, various droplet sorting devices with high throughput and accuracy have been developed. A droplet sorter with the highest sorting throughput of 30,000 droplets per second was developed in 2015. Since then, increased attention has been paid to expanding the possibilities of droplet sorting technology and strengthening its advantages over flow cytometry. This review aimed to summarize the recent progress in droplet sorting technology from the perspectives of device design, detection signal, actuating force, and applications. Technical details for improving droplet sorting through various approaches are introduced and discussed. Finally, we discuss the current limitations of droplet sorting for single-cell studies along with the existing gap between the laboratory and industry and provide our insights for future development of droplet sorters.
Collapse
Affiliation(s)
- Guoyun Sun
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Lisha Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology GTIIT, Shantou, Guangdong, 515063, China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Chia-Hung Chen
- Department of Biomedical Engineering, College of Engineering, City University of Hong Kong, Hong Kong, China.
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Li X, You B, Shum HC, Chen CH. Future foods: Design, fabrication and production through microfluidics. Biomaterials 2022; 287:121631. [PMID: 35717791 DOI: 10.1016/j.biomaterials.2022.121631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/12/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Many delicious foods are soft matter systems with health ingredients and unique internal structures that provide rich nutrition, unique textures, and popular flavors. Obtaining these special properties in food products usually requires specialized processes. Microfluidic technologies have been developed to physically manipulate liquids to produce a broad range of microunits, providing a suitable approach for precise fabrication of functional biomaterials with desirable interior structures in a bottom-up fashion. In this review, we present how microfluidics has been applied to produce gel-based structures and highlight their use in fabricating novel foods, focusing on, among others, cultured meat as a rapidly growing field in food industry. We first discuss the behaviors of food liquids in microchannels for fluidic structure design. Then, different types of microsized building blocks with specific geometries fabricated through microfluidics are introduced, including particles (point), fibers (line), and sheets (plane). These well-defined units can encapsulate or interact with cells, forming microtissues to construct meat products with desirable architectures. After that, we review approaches to scale up microfluidic devices for mass production of the hydrogel building blocks and highlight the challenges associated with bottom-up food production.
Collapse
Affiliation(s)
- Xiufeng Li
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China
| | - Baihao You
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Ho Cheung Shum
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong, China; Department of Mechanical Engineering, University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong, China; City University of Hong Kong, Shenzhen Research Institute, 8 Yuexing 1st Road, Shenzhen Hi-tech Industrial Park, Nanshan District, Shenzhen, China.
| |
Collapse
|
4
|
Pärnamets K, Pardy T, Koel A, Rang T, Scheler O, Le Moullec Y, Afrin F. Optical Detection Methods for High-Throughput Fluorescent Droplet Microflow Cytometry. MICROMACHINES 2021; 12:mi12030345. [PMID: 33807031 PMCID: PMC8004903 DOI: 10.3390/mi12030345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
High-throughput microflow cytometry has become a focal point of research in recent years. In particular, droplet microflow cytometry (DMFC) enables the analysis of cells reacting to different stimuli in chemical isolation due to each droplet acting as an isolated microreactor. Furthermore, at high flow rates, the droplets allow massive parallelization, further increasing the throughput of droplets. However, this novel methodology poses unique challenges related to commonly used fluorometry and fluorescent microscopy techniques. We review the optical sensor technology and light sources applicable to DMFC, as well as analyze the challenges and advantages of each option, primarily focusing on electronics. An analysis of low-cost and/or sufficiently compact systems that can be incorporated into portable devices is also presented.
Collapse
Affiliation(s)
- Kaiser Pärnamets
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
- Correspondence:
| | - Tamas Pardy
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (T.P.); (O.S.)
| | - Ants Koel
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Toomas Rang
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 19086 Tallinn, Estonia; (T.P.); (O.S.)
| | - Yannick Le Moullec
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| | - Fariha Afrin
- Thomas Johann Seebeck Department of Electronics, Tallinn University of Technology, 19086 Tallinn, Estonia; (A.K.); (T.R.); (Y.L.M.); (F.A.)
| |
Collapse
|
6
|
Sun G, Teng Y, Zhao Z, Cheow LF, Yu H, Chen CH. Functional Stem Cell Sorting via Integrative Droplet Synchronization. Anal Chem 2020; 92:7915-7923. [DOI: 10.1021/acs.analchem.0c01312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Guoyun Sun
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, Singapore
| | - Yao Teng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore
| | - Zixuan Zhao
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 04-08 Singapore
| | - Lih Feng Cheow
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, 04-08, Singapore
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, MD9, Singapore
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 04-08 Singapore
- Institute of Bioengineering and Nanotechnology, A*STAR, 31 Biopolis Way, The Nanos 07-01, Singapore
- CAMP, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 04-01, Singapore
| | - Chia-Hung Chen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong SAR China
| |
Collapse
|