1
|
Olano C, Rodríguez M. Actinomycetes Associated with Arthropods as a Source of New Bioactive Compounds. Curr Issues Mol Biol 2024; 46:3822-3838. [PMID: 38785506 PMCID: PMC11119530 DOI: 10.3390/cimb46050238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Antimicrobial resistance is one of the main global threats to human health in the 21st century due to the rapid appearance of bacterial resistance and the lack of novel bioactive compounds. Natural products, especially from Actinomycetes, remain the best source to refill the drug industry pipeline. Different strategies have been pursued to increase the chances of discovering new molecules, such as studying underexplored environments like arthropod symbionts, which represent a relevant reservoir for active metabolites. This review summarizes recent research on the identification of bioactive molecules produced by Actinomycetes associated with arthropods' microbiome. The metabolites have been categorized based on their structural properties and host, highlighting that multidisciplinary approaches will be the key to fully understanding this complex relationship.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Miriam Rodríguez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006 Oviedo, Spain;
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
2
|
Dell M, Tran MA, Capper MJ, Sundaram S, Fiedler J, Koehnke J, Hellmich UA, Hertweck C. Trapping of a Polyketide Synthase Module after C-C Bond Formation Reveals Transient Acyl Carrier Domain Interactions. Angew Chem Int Ed Engl 2024; 63:e202315850. [PMID: 38134222 DOI: 10.1002/anie.202315850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
Modular polyketide synthases (PKSs) are giant assembly lines that produce an impressive range of biologically active compounds. However, our understanding of the structural dynamics of these megasynthases, specifically the delivery of acyl carrier protein (ACP)-bound building blocks to the catalytic site of the ketosynthase (KS) domain, remains severely limited. Using a multipronged structural approach, we report details of the inter-domain interactions after C-C bond formation in a chain-branching module of the rhizoxin PKS. Mechanism-based crosslinking of an engineered module was achieved using a synthetic substrate surrogate that serves as a Michael acceptor. The crosslinked protein allowed us to identify an asymmetric state of the dimeric protein complex upon C-C bond formation by cryo-electron microscopy (cryo-EM). The possible existence of two ACP binding sites, one of them a potential "parking position" for substrate loading, was also indicated by AlphaFold2 predictions. NMR spectroscopy showed that a transient complex is formed in solution, independent of the linker domains, and photochemical crosslinking/mass spectrometry of the standalone domains allowed us to pinpoint the interdomain interaction sites. The structural insights into a branching PKS module arrested after C-C bond formation allows a better understanding of domain dynamics and provides valuable information for the rational design of modular assembly lines.
Collapse
Affiliation(s)
- Maria Dell
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
| | - Mai Anh Tran
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Michael J Capper
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Srividhya Sundaram
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
| | - Jonas Fiedler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
| | - Jesko Koehnke
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
- Institute of Food Chemistry, Leibniz University Hannover, 30167, Hannover, Germany
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, 60438, Frankfurt am Main, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
3
|
Zotchev SB. Unlocking the potential of bacterial endophytes from medicinal plants for drug discovery. Microb Biotechnol 2024; 17:e14382. [PMID: 38345183 PMCID: PMC10884874 DOI: 10.1111/1751-7915.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/20/2023] [Indexed: 02/24/2024] Open
Abstract
Among the plant-associated microorganisms, the so-called endophytes continue to attract much attention because of their ability not only to protect host plants from biotic and abiotic stress factors, but also the potential to produce bioactive secondary metabolites. The latter property can elicit growth-promoting effects on plants, as well as boost the production of plant-specific secondary metabolites with valuable pharmacological properties. In addition, endophyte-derived secondary metabolites may be a rich source for the discovery of drugs to treat various diseases, including infections and cancer. However, the full potential of endophytes to produce bioactive secondary metabolites is often not revealed upon conventional cultivation in the laboratory. New advances in genomics and metabolic engineering offer exciting opportunities for the exploration and exploitation of endophytes' biosynthetic potential. This review focuses on bacterial endophytes of medicinal plants, some of their secondary metabolites and recent advances in deciphering their biosynthesis. The latter may assist in genetic engineering efforts aimed at the discovery of novel bioactive compounds with the potential to be developed into drugs.
Collapse
Affiliation(s)
- Sergey B. Zotchev
- Division of Pharmacognosy, Department of Pharmaceutical SciencesUniversity of ViennaViennaAustria
| |
Collapse
|
4
|
Montuori E, Martinez KA, De Luca D, Ianora A, Lauritano C. Transcriptome Sequencing of the Diatom Asterionellopsis thurstonii and In Silico Identification of Enzymes Potentially Involved in the Synthesis of Bioactive Molecules. Mar Drugs 2023; 21:md21020126. [PMID: 36827167 PMCID: PMC9959416 DOI: 10.3390/md21020126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Microalgae produce a plethora of primary and secondary metabolites with possible applications in several market sectors, including cosmetics, human nutrition, aquaculture, biodiesel production and treatment/prevention of human diseases. Diatoms, in particular, are the most diversified microalgal group, many species of which are known to have anti-cancer, anti-oxidant, anti-diabetes, anti-inflammatory and immunomodulatory properties. Compounds responsible for these activities are often still unknown. The aim of this study was to de novo sequence the full transcriptome of two strains of the diatom Asterionellopsis thurstonii, sampled from two different locations and cultured in both control and phosphate starvation conditions. We used an RNA-sequencing approach to in silico identify transcripts potentially involved in the synthesis/degradation of compounds with anti-cancer and immunomodulatory properties. We identified transcript coding for L-asparaginase I, polyketide cyclase/dehydrase, bifunctional polyketide phosphatase/kinase, 1-deoxy-D-xylulose-5-phosphate synthase (fragment), inositol polyphosphate 5-phosphatase INPP5B/F, catechol O-Methyltransferase, digalactosyldiacylglycerol synthase (DGD1), 1,2-diacylglycerol-3-beta-galactosyltransferase and glycerolphosphodiester phosphodiesterase. Differential expression analysis also allowed to identify in which culturing condition these enzymes are more expressed. Overall, these data give new insights on the annotation of diatom genes, enzymatic pathways involved in the generation of bioactive molecules and possible exploitation of Asterionellopsis thurstonii.
Collapse
Affiliation(s)
- Eleonora Montuori
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d’Alcontres 31, 98166 Messina, Italy
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Kevin A. Martinez
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Daniele De Luca
- Department of Biology, University of Naples Federico II, Via Foria 223, 80139 Naples, Italy
| | - Adrianna Ianora
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
| | - Chiara Lauritano
- Ecosustainable Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Via Acton 55, 80133 Naples, Italy
- Correspondence: author:
| |
Collapse
|
5
|
Zhang H, Zhang S, Zhang J, Qi H, Wang H, Zhang L, Huang J, Wang J. Acyltransferase Domain Swapping for the Production of Tenvermectin B Metabolites in Genetically Engineered Strain Streptomyces avermitilis HU02. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11994-12003. [PMID: 36121904 DOI: 10.1021/acs.jafc.2c04482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tenvermectins A and B (TVMs A and B) are hybrid natural compounds of avermectins and milbemycins with enhanced insecticidal activity. Aiming at obtaining a strain for the production of the higher activity metabolite-TVM-B as a major constituent, a recombinant strain Streptomyces avermitilis HU02 was constructed by a domain swapping strategy in which milA1-AT0 gene in S. avermitilis MHJ1011 was replaced by eryA1-AT0 gene from Saccharopolyspora erythraea ATCC 40137. Chemical investigation on the culture of S. avermitilis HU02 led to the isolation of a large amount of TVM-B and trace amounts of five new TVM-B analogues. The structures of new metabolites were elucidated by extensive spectroscopic analysis including 1D and 2D nuclear magnetic resonance and high-resolution electrospray ionization mass spectrometry data. The bioassay test indicated that five new TVM-B analogues exhibited potent insecticidal activity against Tetranychus cinnabarinus and Bursaphelenchus xylophilus. This study provided a feasible route to the low-cost production of TVM-B and enriched the structural diversity of TVM-B metabolites.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
- Institute of Natural Active Substances Research and Utilization, School of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou 318020, China
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Shaoyong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Ji Zhang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Huan Qi
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Han Wang
- Life Science and Biotechnology Research Center, School of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Liqin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Jun Huang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
- Zhejiang Makohs Biotech Co., Ltd, Taizhou 318000, P.R. China
| | - Jidong Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|
6
|
Engineering the precursor pool to modulate the production of pamamycins in the heterologous host S. albus J1074. Metab Eng 2021; 67:11-18. [PMID: 34051369 DOI: 10.1016/j.ymben.2021.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/20/2022]
Abstract
Pamamycins, a group of polyketides originally discovered in Streptomyces alboniger, induce sporulation in Streptomyces and inhibit the growth of Gram-positive bacteria, Mycobacterium tuberculosis and fungi. The pamamycin biosynthetic gene cluster encodes 6 ketosynthases that utilize a variety of three-carbon to five-carbon CoA thioesters as starter and extender units. This promiscuity in production results in an up to 18 different derivatives during fermentation. For more-selective production and simplified purification, we aimed to modify the precursor supply to narrow the spectrum of the produced derivatives. Eight genes potentially responsible for the supply of two major precursors, 2-S-methylmalonyl-CoA and 2-S-ethylmalonyl-CoA, were identified using the NCBI Basic Local Alignment Search Tool (BLAST) against the genome of the heterologous host S. albus J1074. Knockout mutants of the identified genes were constructed and their impact on intracellular CoA ester concentrations and on the production of pamamycins was determined. The created mutants enabled us to conclusively identify the ethylmalonyl-CoA supplying routes and their impact on the production of pamamycin. Furthermore, we gained significant information on the origin of the methylmalonyl-CoA supply in Streptomyces albus.
Collapse
|
7
|
Abstract
Inflammatory processes occur as a generic response of the immune system and can be triggered by various factors, such as infection with pathogenic microorganisms or damaged tissue. Due to the complexity of the inflammation process and its role in common diseases like asthma, cancer, skin disorders or Alzheimer's disease, anti-inflammatory drugs are of high pharmaceutical interest. Nature is a rich source for compounds with anti-inflammatory properties. Several studies have focused on the structural optimization of natural products to improve their pharmacological properties. As derivatization through total synthesis is often laborious with low yields and limited stereoselectivity, the use of biosynthetic, enzyme-driven reactions is an attractive alternative for synthesizing and modifying complex bioactive molecules. In this minireview, we present an outline of the biotechnological methods used to derivatize anti-inflammatory natural products, including precursor-directed biosynthesis, mutasynthesis, combinatorial biosynthesis, as well as whole-cell and in vitro biotransformation.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| | - Angela Sester
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
- Current address: Chair of Technical BiochemistryTechnical University of DresdenBergstrasse 6601069DresdenGermany
| | - Markus Nett
- Department of Biochemical and Chemical EngineeringLaboratory of Technical BiologyTU Dortmund UniversityEmil-Figge-Strasse 6644227DortmundGermany
| |
Collapse
|
8
|
|
9
|
Romanowski S, Eustáquio AS. Synthetic biology for natural product drug production and engineering. Curr Opin Chem Biol 2020; 58:137-145. [DOI: 10.1016/j.cbpa.2020.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/09/2020] [Accepted: 09/21/2020] [Indexed: 12/23/2022]
|
10
|
Malico AA, Nichols L, Williams GJ. Synthetic biology enabling access to designer polyketides. Curr Opin Chem Biol 2020; 58:45-53. [PMID: 32758909 DOI: 10.1016/j.cbpa.2020.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/08/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022]
Abstract
The full potential of polyketide discovery has yet to be reached owing to a lack of suitable technologies and knowledge required to advance engineering of polyketide biosynthesis. Recent investigations on the discovery, enhancement, and non-natural use of these biosynthetic gene clusters via computational biology, metabolic engineering, structural biology, and enzymology-guided approaches have facilitated improved access to designer polyketides. Here, we discuss recent successes in gene cluster discovery, host strain engineering, precursor-directed biosynthesis, combinatorial biosynthesis, polyketide tailoring, and high-throughput synthetic biology, as well as challenges and outlooks for rapidly generating useful target polyketides.
Collapse
Affiliation(s)
- Alexandra A Malico
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States
| | - Lindsay Nichols
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, 27695, United States; Comparative Medicine Institute, NC State University, Raleigh, NC, 27695, United States.
| |
Collapse
|
11
|
Hwang S, Lee N, Cho S, Palsson B, Cho BK. Repurposing Modular Polyketide Synthases and Non-ribosomal Peptide Synthetases for Novel Chemical Biosynthesis. Front Mol Biosci 2020; 7:87. [PMID: 32500080 PMCID: PMC7242659 DOI: 10.3389/fmolb.2020.00087] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
In nature, various enzymes govern diverse biochemical reactions through their specific three-dimensional structures, which have been harnessed to produce many useful bioactive compounds including clinical agents and commodity chemicals. Polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) are particularly unique multifunctional enzymes that display modular organization. Individual modules incorporate their own specific substrates and collaborate to assemble complex polyketides or non-ribosomal polypeptides in a linear fashion. Due to the modular properties of PKSs and NRPSs, they have been attractive rational engineering targets for novel chemical production through the predictable modification of each moiety of the complex chemical through engineering of the cognate module. Thus, individual reactions of each module could be separated as a retro-biosynthetic biopart and repurposed to new biosynthetic pathways for the production of biofuels or commodity chemicals. Despite these potentials, repurposing attempts have often failed owing to impaired catalytic activity or the production of unintended products due to incompatible protein–protein interactions between the modules and structural perturbation of the enzyme. Recent advances in the structural, computational, and synthetic tools provide more opportunities for successful repurposing. In this review, we focused on the representative strategies and examples for the repurposing of modular PKSs and NRPSs, along with their advantages and current limitations. Thereafter, synthetic biology tools and perspectives were suggested for potential further advancement, including the rational and large-scale high-throughput approaches. Ultimately, the potential diverse reactions from modular PKSs and NRPSs would be leveraged to expand the reservoir of useful chemicals.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Namil Lee
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Systems and Synthetic Biology Laboratory, Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Intelligent Synthetic Biology Center, Daejeon, South Korea
| |
Collapse
|
12
|
Abstract
Burkholderia bacteria are multifaceted organisms that are ecologically and metabolically diverse. The Burkholderia genus has gained prominence because it includes human pathogens; however, many strains are nonpathogenic and have desirable characteristics such as beneficial plant associations and degradation of pollutants. The diversity of the Burkholderia genus is reflected within the large genomes that feature multiple replicons. Burkholderia genomes encode a plethora of natural products with potential therapeutic relevance and biotechnological applications. This review highlights Burkholderia as an emerging source of natural products. An overview of the taxonomy of the Burkholderia genus, which is currently being revised, is provided. We then present a curated compilation of natural products isolated from Burkholderia sensu lato and analyze their characteristics in terms of biosynthetic class, discovery method, and bioactivity. Finally, we describe and discuss genome characteristics and highlight the biosynthesis of a select number of natural products that are encoded in unusual biosynthetic gene clusters. The availability of >1000 Burkholderia genomes in public databases provides an opportunity to realize the genetic potential of this underexplored taxon for natural product discovery.
Collapse
Affiliation(s)
- Sylvia Kunakom
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Alessandra S. Eustáquio
- Department of Medicinal Chemistry and Pharmacognosy and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|